InvertMotorBigModel Class Reference

class for robot controller is based on InvertMotorNStep More...

#include <invertmotorbigmodel.h>

Inherits InvertMotorController.

Inheritance diagram for InvertMotorBigModel:

Inheritance graph
[legend]
Collaboration diagram for InvertMotorBigModel:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 InvertMotorBigModel (const InvertMotorBigModelConf &conf=getDefaultConf())
virtual void init (int sensornumber, int motornumber, RandGen *randGen=0)
 initialisation of the controller with the given sensor/ motornumber Must be called before use.
virtual ~InvertMotorBigModel ()
virtual int getSensorNumber () const
 returns the number of sensors the controller was initialised with or 0 if not initialised
virtual int getMotorNumber () const
 returns the mumber of motors the controller was initialised with or 0 if not initialised
virtual void step (const sensor *, int number_sensors, motor *, int number_motors)
 performs one step (includes learning).
virtual void stepNoLearning (const sensor *, int number_sensors, motor *, int number_motors)
 performs one step without learning. Calulates motor commands from sensor inputs.
virtual bool store (FILE *f) const
 stores the controller values to a given file.
virtual bool restore (FILE *f)
 loads the controller values from a given file.
virtual iparamkeylist getInternalParamNames () const
 The list of the names of all internal parameters given by getInternalParams().
virtual iparamvallist getInternalParams () const
virtual ilayerlist getStructuralLayers () const
 Specifies which parameter vector forms a structural layer (in terms of a neural network) The ordering is important.
virtual iconnectionlist getStructuralConnections () const
 Specifies which parameter matrix forms a connection between layers (in terms of a neural network) The orderning is not important.
virtual paramval getParam (const paramkey &key) const
virtual bool setParam (const paramkey &key, paramval val)
virtual paramlist getParamList () const
 The list of all parameters with there value as allocated lists.
virtual void setMotorTeachingSignal (const motor *teaching, int len)
 The given motor teaching signal is used for this timestep.
virtual void setSensorTeachingSignal (const sensor *teaching, int len)
 The given sensor teaching signal (distal learning) is used for this timestep.
void getLastMotors (motor *motors, int len)
void kwtaInhibition (matrix::Matrix &weightmatrix, unsigned int k, double damping)
 k-winner take all inhibition for synapses.
void limitC (matrix::Matrix &weightmatrix, unsigned int rfSize)
 sets all connections to zero which are further away then rfSize.

Static Public Member Functions

static InvertMotorBigModelConf getDefaultConf ()

Protected Member Functions

virtual void fillBuffersAndControl (const sensor *x_, int number_sensors, motor *y_, int number_motors)
 puts the sensors in the ringbuffer, generate controller values and put them in the
virtual void calcEtaAndBufferIt (int delay)
 calculates the first shift into the motor space useing delayed motor values.
virtual void learnController ()
 learn H,C with motors y and corresponding sensors x
virtual void calcCandHUpdates (matrix::Matrix &C_update, matrix::Matrix &H_update, int y_delay)
 calculates the Update for C and H
virtual void updateCandH (const matrix::Matrix &C_update, const matrix::Matrix &H_update, double squashSize)
 updates the matrix C and H
virtual void learnModel (int delay)
 learn A, (and S) using motors y and corresponding sensors x
virtual void management ()
 handles inhibition damping etc.
virtual matrix::Matrix calculateControllerValues (const matrix::Matrix &x_smooth)
 returns controller output for given sensor values
matrix::Matrix calcDerivatives (const matrix::Matrix *buffer, int delay)
 Calculates first and second derivative and returns both in on matrix (above).

Protected Attributes

unsigned short number_sensors
unsigned short number_motors
matrix::Matrix A
 Model Matrix (motors to sensors).
matrix::Matrix S
 additional Model Matrix (sensors derivatives to sensors)
matrix::Matrix C
 Controller Matrix.
matrix::Matrix H
 Controller Bias.
NoiseGeneratorBNoiseGen
 Noisegenerator for noisy bias.
matrix::Matrix R
 C*A.
matrix::Matrix SmallID
 small identity matrix in the dimension of R
matrix::Matrix xsi
 current output error
double xsi_norm
 norm of matrix
double xsi_norm_avg
 average norm of xsi (used to define whether Modell learns)
double pain
 if the modelling error (xsi) is too high we have a pain signal
matrix::Matrixx_buffer
matrix::Matrixy_buffer
matrix::Matrixeta_buffer
matrix::Matrix zero_eta
matrix::Matrix x_smooth
matrix::Matrix y_teaching
 teaching motor signal
bool useTeaching
 flag whether there is an actual teachning signal or not
int t_rand
 initial random time to avoid syncronous management of all controllers
int managementInterval
 interval between subsequent management function calls
paramval inhibition
 inhibition strength for sparce kwta strategy (is scaled with epsC)
paramval kwta
 (int) number of synapses that get strengthend
paramval limitRF
 (int) receptive field of motor neurons (number of offcenter sensors) if null then no limitation. Mutual exclusive with inhibition
paramval dampS
 damping of S matrix
InvertMotorBigModelConf conf

Detailed Description

class for robot controller is based on InvertMotorNStep


Constructor & Destructor Documentation

InvertMotorBigModel ( const InvertMotorBigModelConf conf = getDefaultConf()  ) 

~InvertMotorBigModel (  )  [virtual]


Member Function Documentation

void calcCandHUpdates ( matrix::Matrix C_update,
matrix::Matrix H_update,
int  y_delay 
) [protected, virtual]

calculates the Update for C and H

Matrix calcDerivatives ( const matrix::Matrix buffer,
int  delay 
) [protected]

Calculates first and second derivative and returns both in on matrix (above).

We use simple discrete approximations:

\[ f'(x) = (f(x) - f(x-1)) / 2 \]

\[ f''(x) = f(x) - 2f(x-1) + f(x-2) \]

where we have to go into the past because we do not have f(x+1). The scaling can be neglegted.

void calcEtaAndBufferIt ( int  delay  )  [protected, virtual]

calculates the first shift into the motor space useing delayed motor values.

Matrix calculateControllerValues ( const matrix::Matrix x_smooth  )  [protected, virtual]

returns controller output for given sensor values

Parameters:
x_smooth smoothed sensors Matrix(number_channels,1)

void fillBuffersAndControl ( const sensor x_,
int  number_sensors,
motor y_,
int  number_motors 
) [protected, virtual]

puts the sensors in the ringbuffer, generate controller values and put them in the

static InvertMotorBigModelConf getDefaultConf (  )  [inline, static]

list< Inspectable::iparamkey > getInternalParamNames (  )  const [virtual]

The list of the names of all internal parameters given by getInternalParams().

The naming convention is "v[i]" for vectors and "A[i][j]" for matrices, where i, j start at 0.

Returns:
: list of keys

Reimplemented from Inspectable.

list< Inspectable::iparamval > getInternalParams (  )  const [virtual]

Returns:
: list of values

Reimplemented from Inspectable.

void getLastMotors ( motor motors,
int  len 
)

virtual int getMotorNumber (  )  const [inline, virtual]

returns the mumber of motors the controller was initialised with or 0 if not initialised

Implements AbstractController.

Configurable::paramval getParam ( const paramkey key  )  const [virtual]

Configurable::paramlist getParamList (  )  const [virtual]

The list of all parameters with there value as allocated lists.

Note that these are only parameters that are managed manually (with setParam, getParam)

See also:
getAllParamNames()
Returns:
list of key-value pairs

Reimplemented from Configurable.

virtual int getSensorNumber (  )  const [inline, virtual]

returns the number of sensors the controller was initialised with or 0 if not initialised

Implements AbstractController.

list< Inspectable::IConnection > getStructuralConnections (  )  const [virtual]

Specifies which parameter matrix forms a connection between layers (in terms of a neural network) The orderning is not important.

Returns:
: list of layer names with dimension

Reimplemented from Inspectable.

list< Inspectable::ILayer > getStructuralLayers (  )  const [virtual]

Specifies which parameter vector forms a structural layer (in terms of a neural network) The ordering is important.

The first entry is the input layer and so on.

Returns:
: list of layer names with dimension

Reimplemented from Inspectable.

void init ( int  sensornumber,
int  motornumber,
RandGen randGen = 0 
) [virtual]

initialisation of the controller with the given sensor/ motornumber Must be called before use.

The random generator is optional.

Implements AbstractController.

void kwtaInhibition ( matrix::Matrix weightmatrix,
unsigned int  k,
double  damping 
)

k-winner take all inhibition for synapses.

k largest synapses are strengthed and the rest are inhibited. strong synapes are scaled by 1+(damping/k) and weak synapses are scaled by 1-(damping/(n-k)) where n is the number of synapes

Parameters:
weightmatrix reference to weight matrix. Synapses for a neuron are in one row. The inhibition is done for all rows independently
k number of synapes to strengthen
damping strength of supression and exitation (typically 0.001)

void learnController (  )  [protected, virtual]

learn H,C with motors y and corresponding sensors x

void learnModel ( int  delay  )  [protected, virtual]

learn A, (and S) using motors y and corresponding sensors x

void limitC ( matrix::Matrix weightmatrix,
unsigned int  rfSize 
)

sets all connections to zero which are further away then rfSize.

If rfSize == 1 then only main diagonal is left. If rfSize = 2: main diagonal and upper and lower side diagonal are kept and so on and so forth.

void management (  )  [protected, virtual]

handles inhibition damping etc.

bool restore ( FILE *  f  )  [virtual]

loads the controller values from a given file.

Implements Storeable.

void setMotorTeachingSignal ( const motor teaching,
int  len 
) [virtual]

The given motor teaching signal is used for this timestep.

It is used as a feed forward teaching signal for the controller. Please note, that the teaching signal has to be given each timestep for a continuous teaching process.

bool setParam ( const paramkey key,
paramval  val 
) [virtual]

void setSensorTeachingSignal ( const sensor teaching,
int  len 
) [virtual]

The given sensor teaching signal (distal learning) is used for this timestep.

First the belonging motor teachung signal is calculated by the inverse model. See setMotorTeachingSignal

void step ( const sensor ,
int  number_sensors,
motor ,
int  number_motors 
) [virtual]

performs one step (includes learning).

Calulates motor commands from sensor inputs.

Implements AbstractController.

void stepNoLearning ( const sensor ,
int  number_sensors,
motor ,
int  number_motors 
) [virtual]

performs one step without learning. Calulates motor commands from sensor inputs.

Implements AbstractController.

bool store ( FILE *  f  )  const [virtual]

stores the controller values to a given file.

Implements Storeable.

void updateCandH ( const matrix::Matrix C_update,
const matrix::Matrix H_update,
double  squashSize 
) [protected, virtual]

updates the matrix C and H


Member Data Documentation

matrix::Matrix A [protected]

Model Matrix (motors to sensors).

NoiseGenerator* BNoiseGen [protected]

Noisegenerator for noisy bias.

matrix::Matrix C [protected]

Controller Matrix.

InvertMotorBigModelConf conf [protected]

paramval dampS [protected]

damping of S matrix

matrix::Matrix* eta_buffer [protected]

matrix::Matrix H [protected]

Controller Bias.

paramval inhibition [protected]

inhibition strength for sparce kwta strategy (is scaled with epsC)

paramval kwta [protected]

(int) number of synapses that get strengthend

paramval limitRF [protected]

(int) receptive field of motor neurons (number of offcenter sensors) if null then no limitation. Mutual exclusive with inhibition

int managementInterval [protected]

interval between subsequent management function calls

unsigned short number_motors [protected]

unsigned short number_sensors [protected]

double pain [protected]

if the modelling error (xsi) is too high we have a pain signal

matrix::Matrix R [protected]

C*A.

matrix::Matrix S [protected]

additional Model Matrix (sensors derivatives to sensors)

matrix::Matrix SmallID [protected]

small identity matrix in the dimension of R

int t_rand [protected]

initial random time to avoid syncronous management of all controllers

bool useTeaching [protected]

flag whether there is an actual teachning signal or not

matrix::Matrix* x_buffer [protected]

matrix::Matrix x_smooth [protected]

matrix::Matrix xsi [protected]

current output error

double xsi_norm [protected]

norm of matrix

double xsi_norm_avg [protected]

average norm of xsi (used to define whether Modell learns)

matrix::Matrix* y_buffer [protected]

matrix::Matrix y_teaching [protected]

teaching motor signal

matrix::Matrix zero_eta [protected]


The documentation for this class was generated from the following files:
Generated on Fri Oct 30 16:29:02 2009 for Robot Simulator of the Robotics Group for Self-Organization of Control by  doxygen 1.4.7