#include <abstractmodel.h>
Inherits Configurable, Storeable, and Inspectable.
Inherited by InvertableModel, and SOM.
Inheritance diagram for AbstractModel:
Public Member Functions | |
AbstractModel () | |
AbstractModel (const std::string &name, const std::string &revision) | |
virtual | ~AbstractModel () |
virtual void | init (unsigned int inputDim, unsigned int outputDim, double unit_map=0.0, RandGen *randGen=0)=0 |
initialisation of the network with the given number of input and output units | |
virtual const matrix::Matrix | process (const matrix::Matrix &input)=0 |
passive processing of the input (this function is not constant since a recurrent network for example might change internal states | |
virtual const matrix::Matrix | learn (const matrix::Matrix &input, const matrix::Matrix &nom_output, double learnRateFactor=1)=0 |
virtual void | damp (double damping)=0 |
damps the weights and the biases by multiplying (1-damping) | |
virtual unsigned int | getInputDim () const =0 |
returns the number of input neurons | |
virtual unsigned int | getOutputDim () const =0 |
returns the number of output neurons |
AbstractModel | ( | ) | [inline] |
AbstractModel | ( | const std::string & | name, | |
const std::string & | revision | |||
) | [inline] |
virtual ~AbstractModel | ( | ) | [inline, virtual] |
virtual void damp | ( | double | damping | ) | [pure virtual] |
damps the weights and the biases by multiplying (1-damping)
Implemented in Elman, FeedForwardNN, MultiLayerFFNN, OneLayerFFNN, and SOM.
virtual unsigned int getInputDim | ( | ) | const [pure virtual] |
virtual unsigned int getOutputDim | ( | ) | const [pure virtual] |
virtual void init | ( | unsigned int | inputDim, | |
unsigned int | outputDim, | |||
double | unit_map = 0.0 , |
|||
RandGen * | randGen = 0 | |||
) | [pure virtual] |
initialisation of the network with the given number of input and output units
inputDim | length of input vector | |
outputDim | length of output vector | |
unit_map | if 0 the parametes are choosen randomly. Otherwise the model is initialised to represent a unit_map with the given response strength. | |
randGen | pointer to random generator, if 0 an new one is used |
Implemented in Elman, MultiLayerFFNN, OneLayerFFNN, and SOM.
virtual const matrix::Matrix learn | ( | const matrix::Matrix & | input, | |
const matrix::Matrix & | nom_output, | |||
double | learnRateFactor = 1 | |||
) | [pure virtual] |
Implemented in Elman, MultiLayerFFNN, OneLayerFFNN, and SOM.
virtual const matrix::Matrix process | ( | const matrix::Matrix & | input | ) | [pure virtual] |
passive processing of the input (this function is not constant since a recurrent network for example might change internal states
Implemented in Elman, MultiLayerFFNN, OneLayerFFNN, and SOM.