#include <onelayerffnn.h>
Inherits FeedForwardNN.
Inheritance diagram for OneLayerFFNN:
Public Member Functions | |
OneLayerFFNN (double eps, double factor_bias=0.1) | |
Uses linear activation function. | |
OneLayerFFNN (double eps, double factor_bias, ActivationFunction actfun, ActivationFunction dactfun) | |
virtual | ~OneLayerFFNN () |
virtual void | init (unsigned int inputDim, unsigned int outputDim, double unit_map=0.0, RandGen *randGen=0) |
initialisation of the network with the given number of input and output units | |
virtual const matrix::Matrix | process (const matrix::Matrix &input) |
passive processing of the input | |
virtual const matrix::Matrix | learn (const matrix::Matrix &input, const matrix::Matrix &nom_output, double learnRateFactor=1) |
performs learning and returns the network output before learning | |
virtual unsigned int | getInputDim () const |
returns the number of input neurons | |
virtual unsigned int | getOutputDim () const |
returns the number of output neurons | |
virtual const matrix::Matrix & | getWeights () const |
virtual const matrix::Matrix & | getBias () const |
virtual void | damp (double damping) |
damps the weights and the biases by multiplying (1-damping) | |
bool | store (FILE *f) const |
stores the layer binary into file stream | |
bool | restore (FILE *f) |
restores the layer binary from file stream | |
virtual paramkey | getName () const |
return the name of the object | |
virtual paramval | getParam (const paramkey key) const |
virtual bool | setParam (const paramkey key, paramval val) |
virtual paramlist | getParamList () const |
The list of all parameters with there value as allocated lists. |
OneLayerFFNN | ( | double | eps, | |
double | factor_bias = 0.1 | |||
) | [inline] |
Uses linear activation function.
eps | learning rate | |
factor_bias | learning rate factor for bias learning |
OneLayerFFNN | ( | double | eps, | |
double | factor_bias, | |||
ActivationFunction | actfun, | |||
ActivationFunction | dactfun | |||
) | [inline] |
eps | learning rate | |
factor_bias | learning rate factor for bias learning | |
actfun | callback activation function (see FeedForwardNN) | |
dactfun | callback for first derivative of the activation function |
virtual ~OneLayerFFNN | ( | ) | [inline, virtual] |
virtual void damp | ( | double | damping | ) | [inline, virtual] |
virtual const matrix::Matrix& getBias | ( | ) | const [inline, virtual] |
virtual unsigned int getInputDim | ( | ) | const [inline, virtual] |
virtual paramkey getName | ( | ) | const [inline, virtual] |
virtual unsigned int getOutputDim | ( | ) | const [inline, virtual] |
virtual paramlist getParamList | ( | ) | const [inline, virtual] |
The list of all parameters with there value as allocated lists.
Note that these are only parameters that are managed manually (with setParam, getParam)
Reimplemented from Configurable.
virtual const matrix::Matrix& getWeights | ( | ) | const [inline, virtual] |
void init | ( | unsigned int | inputDim, | |
unsigned int | outputDim, | |||
double | unit_map = 0.0 , |
|||
RandGen * | randGen = 0 | |||
) | [virtual] |
initialisation of the network with the given number of input and output units
Implements AbstractModel.
const Matrix learn | ( | const matrix::Matrix & | input, | |
const matrix::Matrix & | nom_output, | |||
double | learnRateFactor = 1 | |||
) | [virtual] |
const Matrix process | ( | const matrix::Matrix & | input | ) | [virtual] |
bool restore | ( | FILE * | f | ) | [virtual] |
bool store | ( | FILE * | f | ) | const [virtual] |