abstractmodel.h

Go to the documentation of this file.
00001 /***************************************************************************
00002  *   Copyright (C) 2005 by Robot Group Leipzig                             *
00003  *    martius@informatik.uni-leipzig.de                                    *
00004  *    fhesse@informatik.uni-leipzig.de                                     *
00005  *    der@informatik.uni-leipzig.de                                        *
00006  *                                                                         *
00007  *   This program is free software; you can redistribute it and/or modify  *
00008  *   it under the terms of the GNU General Public License as published by  *
00009  *   the Free Software Foundation; either version 2 of the License, or     *
00010  *   (at your option) any later version.                                   *
00011  *                                                                         *
00012  *   This program is distributed in the hope that it will be useful,       *
00013  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
00014  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
00015  *   GNU General Public License for more details.                          *
00016  *                                                                         *
00017  *   You should have received a copy of the GNU General Public License     *
00018  *   along with this program; if not, write to the                         *
00019  *   Free Software Foundation, Inc.,                                       *
00020  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
00021  ***************************************************************************
00022  *                                                                         *
00023  *  DESCRIPTION                                                            *
00024  *                                                                         *
00025  *   $Log: abstractmodel.h,v $
00026  *   Revision 1.6  2008/05/30 11:57:12  martius
00027  *   do processing of inputs in learning function if network is not
00028  *    activated with this input before (was a very probable mistake)
00029  *
00030  *   Revision 1.5  2008/04/17 14:54:44  martius
00031  *   randomGen added, which is a random generator with long period and an
00032  *    internal state. Each Agent has an instance and passed it to the controller
00033  *    and the wiring. This is good for
00034  *   a) repeatability on agent basis,
00035  *   b) parallel execution as done in ode_robots
00036  *
00037  *   Revision 1.4  2008/02/08 13:38:05  der
00038  *   abstract model is inspectable
00039  *
00040  *   Revision 1.3  2007/02/20 15:41:05  martius
00041  *   big model stuff, elman and co
00042  *
00043  *   Revision 1.2  2006/07/27 15:27:20  martius
00044  *   processing should be called before learning
00045  *
00046  *   Revision 1.1  2006/07/20 17:14:34  martius
00047  *   removed std namespace from matrix.h
00048  *   storable interface
00049  *   abstract model and invertablemodel as superclasses for networks
00050  *
00051  *
00052  *                                                                 *
00053  ***************************************************************************/
00054 #ifndef __ABSTRACTMODEL_H
00055 #define __ABSTRACTMODEL_H
00056 
00057 #include "matrix.h"
00058 #include "configurable.h"
00059 #include "storeable.h"
00060 #include "inspectable.h"
00061 #include "randomgenerator.h"
00062 
00063 /// abstract class (interface) for a model that can be used by a controller
00064 class AbstractModel : public Configurable, public Storeable, public Inspectable {
00065  public: 
00066   AbstractModel() {};
00067   AbstractModel(const std::string& name, const std::string& revision)
00068     : Configurable(name, revision) {}
00069   virtual ~AbstractModel(){};
00070 
00071   /** initialisation of the network with the given number of input and output units
00072       @param inputDim length of input vector
00073       @param outputDim length of output vector
00074       @param unit_map if 0 the parametes are choosen randomly. 
00075              Otherwise the model is initialised to represent a unit_map 
00076              with the given response strength.
00077       @param randGen pointer to random generator, if 0 an new one is used
00078    */
00079   virtual void init(unsigned int inputDim, unsigned  int outputDim, 
00080                     double unit_map = 0.0, RandGen* randGen = 0) = 0;
00081 
00082   /** passive processing of the input
00083      (this function is not constant since a recurrent network 
00084      for example might change internal states
00085   */
00086   virtual const matrix::Matrix process (const matrix::Matrix& input) = 0;
00087 
00088   /* performs learning and returns the network output before learning.
00089      Neural networks process the input before. (no need to call process before)
00090      \param learnRateFactor can be given to modify eps for this learning step.
00091   */
00092   virtual const matrix::Matrix learn (const matrix::Matrix& input, 
00093                                       const matrix::Matrix& nom_output, 
00094                                       double learnRateFactor = 1) = 0;
00095 
00096   /// damps the weights and the biases by multiplying (1-damping)
00097   virtual void damp(double damping) = 0;
00098 
00099   /// returns the number of input neurons
00100   virtual unsigned int getInputDim() const = 0;
00101   /// returns the number of output neurons
00102   virtual unsigned int getOutputDim() const = 0;
00103 
00104 };
00105 
00106 
00107 #endif

Generated on Fri Oct 30 16:29:01 2009 for Robot Simulator of the Robotics Group for Self-Organization of Control by  doxygen 1.4.7