semox.h

Go to the documentation of this file.
00001 /***************************************************************************
00002  *   Copyright (C) 2005-2011 by                                            *
00003  *    Georg Martius  <georg dot martius at web dot de>                     *
00004  *    Ralf Der       <ralfder at mis dot mpg dot de>                       *
00005  *                                                                         *
00006  *   ANY COMMERCIAL USE FORBIDDEN!                                         *
00007  *   LICENSE:                                                              *
00008  *   This work is licensed under the Creative Commons                      *
00009  *   Attribution-NonCommercial-ShareAlike 2.5 License. To view a copy of   *
00010  *   this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ *
00011  *   or send a letter to Creative Commons, 543 Howard Street, 5th Floor,   *
00012  *   San Francisco, California, 94105, USA.                                *
00013  *                                                                         *
00014  *   This program is distributed in the hope that it will be useful,       *
00015  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
00016  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *
00017  *                                                                         *
00018  ***************************************************************************/
00019 #ifndef __SEMOX_H
00020 #define __SEMOX_H
00021 
00022 #include <selforg/homeokinbase.h>
00023 #include <selforg/matrix.h>
00024 #include <selforg/teachable.h>
00025 #include <selforg/noisegenerator.h>
00026 #include <selforg/randomgenerator.h>
00027 
00028 
00029 typedef struct SeMoXConf {
00030   int buffersize;   ///< buffersize size of the time-buffer for x,y,eta
00031   matrix::Matrix initialC; ///< initialC initial controller matrix (if null matrix then automatic, see cInit)
00032   double cInit;     ///< cInit initial size of the diagonals of the C matrix (if C is not given)
00033   double cNonDiag;  ///< cNonDiag initial size of the non-diagonal elements of the C matrix (if C is not given)
00034   double aInit;     ///< aInit initial size of the diagonals of the A matrix
00035   double sInit;     ///< sInit initial size of the diagonals of the S matrix
00036   bool modelExt;    ///< modelExt if true then additional matrix S is used in forward model (sees sensors)
00037   /** number of context sensors (considered at the end of the sensor
00038       vector, which are only feed to the model extended model */
00039   int numContext;   
00040   bool someInternalParams;  ///< someInternalParams if true only some internal parameters are exported
00041 } SeMoXConf;
00042 
00043 /**
00044  * This controller follows the prinziple of homeokinesis and 
00045  *  implements the extensions described in the thesis of Georg Martius 
00046  *  2009, University Goettingen: 
00047  *  Goal-Oriented Control of Self-organizing Behavior in Autonomous Robots
00048  *
00049  * This class also implements part of the guided self-organization
00050  *
00051  * Name: SElf-organizing MOtor space eXtended
00052  *
00053  * Main characteristics: Motor Space, Extended World model, Continuity, Teaching interface
00054  *
00055  */
00056 class SeMoX : public HomeokinBase, public Teachable {
00057   friend class ThisSim;
00058 public:
00059   SeMoX(const SeMoXConf& conf = getDefaultConf());
00060 
00061   /// returns the default configuration
00062   static SeMoXConf getDefaultConf(){
00063     SeMoXConf c;
00064     c.buffersize = 50;
00065     // c.initialC // remains 0x0
00066     c.cInit = 1.0;  
00067     c.cNonDiag = 0;  
00068     c.aInit = 1.0;  
00069     c.sInit = 0.0;  
00070     c.modelExt  = true;
00071     c.someInternalParams = true;
00072     c.numContext = 0;
00073     return c;
00074   }
00075 
00076   virtual void init(int sensornumber, int motornumber, RandGen* randGen = 0);
00077 
00078   virtual ~SeMoX();
00079 
00080   /// returns the number of sensors the controller was initialised with or 0 if not initialised
00081   virtual int getSensorNumber() const { return number_sensors; }
00082   /// returns the mumber of motors the controller was initialised with or 0 if not initialised
00083   virtual int getMotorNumber() const  { return number_motors; }
00084 
00085   /// performs one step (includes learning). 
00086   /// Calulates motor commands from sensor inputs.
00087   virtual void step(const sensor* , int number_sensors, motor* , int number_motors);
00088 
00089   /// performs one step without learning. Calulates motor commands from sensor inputs.
00090   virtual void stepNoLearning(const sensor* , int number_sensors, 
00091                               motor* , int number_motors);
00092 
00093   /**** STOREABLE ****/
00094   /** stores the controller values to a given file. */
00095   virtual bool store(FILE* f) const;
00096   /** loads the controller values from a given file. */
00097   virtual bool restore(FILE* f);  
00098 
00099   /**** INSPECTABLE ****/
00100   virtual std::list<ILayer> getStructuralLayers() const;
00101   virtual std::list<IConnection> getStructuralConnections() const;
00102 
00103   /**** TEACHABLE ****/
00104   /** The given motor teaching signal is used for this timestep. 
00105       It is used as a feed forward teaching signal for the controller.
00106       Please note, that the teaching signal has to be given each timestep 
00107        for a continuous teaching process.
00108      @param teaching: matrix with dimensions (motornumber,1)
00109    */
00110   virtual void setMotorTeaching(const matrix::Matrix& teaching);
00111 
00112   /** The given sensor teaching signal (distal learning) is used for this timestep. 
00113       The belonging motor teachung signal is calculated by the inverse model.
00114       See setMotorTeaching
00115      @param teaching: matrix with dimensions (motorsensors,1)
00116    */
00117   virtual void setSensorTeaching(const matrix::Matrix& teaching);  
00118   /// returns the last motor values (useful for cross motor coupling)
00119   virtual matrix::Matrix getLastMotorValues();
00120   /// returns the last sensor values (useful for cross sensor coupling)
00121   virtual matrix::Matrix getLastSensorValues();
00122   
00123 protected: 
00124   unsigned short number_sensors;
00125   unsigned short number_motors;
00126   
00127   matrix::Matrix A; ///< Model Matrix (motors to sensors)
00128   matrix::Matrix S; ///< additional Model Matrix (sensors derivatives to sensors) 
00129   matrix::Matrix C; ///< Controller Matrix
00130   matrix::Matrix H; ///< Controller Bias
00131   matrix::Matrix B; ///< Model Bias
00132   matrix::Matrix R; ///< C*A
00133   matrix::Matrix SmallID; ///< small identity matrix in the dimension of R
00134   matrix::Matrix v; ///< shift
00135   matrix::Matrix xsi; ///< current output error
00136 
00137   NoiseGenerator* BNoiseGen; ///< Noisegenerator for noisy bias
00138   paramval modelNoise;       ///< strength of noisy bias
00139 
00140   double xsi_norm;     ///< norm of matrix
00141   double xsi_norm_avg; ///< average norm of xsi (used to define whether Modell learns)
00142   double pain;         ///< if the modelling error (xsi) is too high we have a pain signal
00143 
00144   matrix::Matrix* x_buffer;
00145   matrix::Matrix* x_c_buffer; ///< buffer for sensors with context sensors
00146   matrix::Matrix* y_buffer;
00147 
00148   matrix::Matrix y_teaching; ///< motor teaching  signal
00149 
00150   paramval gamma_cont;  ///< parameter to include contiuity in motor values (avoid high frequencies)
00151   paramval gamma_teach; ///< strength of teaching 
00152   paramval discountS;   ///< discount strength for hierachical model
00153 
00154   paramval dampModel;       ///< damping of A and S matrices
00155   paramval dampController;  ///< damping of C matrix
00156 
00157   SeMoXConf conf;
00158 
00159   // internal
00160   bool intern_useTeaching; ///< flag whether there is an actual teachning signal or not
00161   int t_rand; ///< initial random time to avoid syncronous management of all controllers
00162   int managementInterval; ///< interval between subsequent management function calls
00163   parambool _modelExt_copy; ///< copy of modelExtension variable (to achieve readonly)
00164 
00165   /// puts the sensors in the ringbuffer, generate controller values and put them in the 
00166   //  ringbuffer as well
00167   virtual void fillBuffersAndControl(const sensor* x_, int number_sensors, 
00168                              motor* y_, int number_motors);
00169 
00170   /// calculates xsi for the current time step using the delayed y values
00171   //  and x delayed by one
00172   //  @param delay 0 for no delay and n>0 for n timesteps delay in the time loop 
00173   virtual void calcXsi(int delay);
00174 
00175   /// learn H,C with motors y and corresponding sensors x
00176   virtual void learnController();
00177 
00178   /// learn A, (and S) using motors y and corresponding sensors x
00179   //  @param delay 0 for no delay and n>0 for n timesteps delay in the time loop 
00180   virtual void learnModel(int delay);
00181 
00182   /// calculates the predicted sensor values
00183   virtual matrix::Matrix model(const matrix::Matrix* x_buffer, int delay, const matrix::Matrix& y);
00184 
00185   /// handles inhibition damping etc.
00186   virtual void management();
00187 
00188   /// returns controller output for given sensor values
00189   virtual matrix::Matrix calculateControllerValues(const matrix::Matrix& x_smooth);   
00190    
00191 protected:
00192   static double regularizedInverse(double v);
00193 
00194 
00195 };
00196 
00197 #endif
Generated on Thu Jun 28 14:45:37 2012 for Robot Simulator of the Robotics Group for Self-Organization of Control by  doxygen 1.6.3