FeedForwardNN Class Reference

#include <feedforwardnn.h>

Inheritance diagram for FeedForwardNN:

Inheritance graph
[legend]
Collaboration diagram for FeedForwardNN:

Collaboration graph
[legend]
List of all members.

Detailed Description

abstract class (interface) for feed forward rate based neural networks

Definition at line 11 of file feedforwardnn.h.

Public Member Functions

 FeedForwardNN ()
virtual ~FeedForwardNN ()
virtual void init (unsigned int inputDim, unsigned int outputDim)=0
 initialisation of the network with the given number of input and output units
virtual const matrix::Matrix process (const matrix::Matrix &input) const =0
 passive processing of the input
virtual const matrix::Matrix learn (const matrix::Matrix &input, const matrix::Matrix &nom_output, double learnRateFactor=1)=0
virtual void damp (double damping)=0
 damps the weights and the biases by multiplying (1-damping)
virtual unsigned int getInputDim () const =0
 returns the number of input neurons
virtual unsigned int getOutputDim () const =0
 returns the number of output neurons

Static Public Member Functions

static double linear (double x)
static double dlinear (double)
static double tanh (double x)
static double dtanh (double x)
static double sigmoid (double x)
static double dsigmoid (double x)


Constructor & Destructor Documentation

FeedForwardNN  )  [inline]
 

Definition at line 13 of file feedforwardnn.h.

virtual ~FeedForwardNN  )  [inline, virtual]
 

Definition at line 14 of file feedforwardnn.h.


Member Function Documentation

virtual void damp double  damping  )  [pure virtual]
 

damps the weights and the biases by multiplying (1-damping)

Implemented in MultiLayerFFNN, and OneLayerFFNN.

static double dlinear double   )  [inline, static]
 

Definition at line 36 of file feedforwardnn.h.

static double dsigmoid double  x  )  [inline, static]
 

Definition at line 40 of file feedforwardnn.h.

static double dtanh double  x  )  [inline, static]
 

Definition at line 38 of file feedforwardnn.h.

virtual unsigned int getInputDim  )  const [pure virtual]
 

returns the number of input neurons

Implemented in MultiLayerFFNN, and OneLayerFFNN.

virtual unsigned int getOutputDim  )  const [pure virtual]
 

returns the number of output neurons

Implemented in MultiLayerFFNN, and OneLayerFFNN.

virtual void init unsigned int  inputDim,
unsigned int  outputDim
[pure virtual]
 

initialisation of the network with the given number of input and output units

Implemented in MultiLayerFFNN, and OneLayerFFNN.

virtual const matrix::Matrix learn const matrix::Matrix input,
const matrix::Matrix nom_output,
double  learnRateFactor = 1
[pure virtual]
 

Implemented in MultiLayerFFNN, and OneLayerFFNN.

static double linear double  x  )  [inline, static]
 

Definition at line 35 of file feedforwardnn.h.

virtual const matrix::Matrix process const matrix::Matrix input  )  const [pure virtual]
 

passive processing of the input

Implemented in MultiLayerFFNN, and OneLayerFFNN.

static double sigmoid double  x  )  [inline, static]
 

Definition at line 39 of file feedforwardnn.h.

static double tanh double  x  )  [inline, static]
 

Definition at line 37 of file feedforwardnn.h.


Generated on Tue Apr 4 19:05:05 2006 for Robotsystem from Robot Group Leipzig by  doxygen 1.4.5