regularisation.h File Reference

#include <cmath>
#include <selforg/controller_misc.h>

Include dependency graph for regularisation.h:

This graph shows which files directly or indirectly include this file:

Go to the source code of this file.

Functions

double sqr (double x)
double g (double z)
 neuron transfer function
double g_s (double z)
 first dervative
double g_derivative (double z)
 first dervative with smoothing for large z
double g_s_inv (double z)
 inverse of the first derivative
double g_s (double z, double xsi)
 

\[ g'(z+xsi) = 1-(tanh(z+xsi))^2 \]

with additional clipping

double g_s_soft (double z, double xsi)
 soft version:

\[ g'(z+xsi) = 1/(1+(z+xsi)^2 \]

with additional clipping

double g_ss_div_s (double z, double xsi)
 an exact formula for g''/g'= -2g(Z), with clipped Z = z+xsi
double g_ss_div_s_soft (double z, double xsi)
 an soft formula for g''/g' = -2Z, with clipped Z = z+xsi
double derive_g_s_inv_exact_clip (double z, double xsi)
 with

\[ g'(z) = 1-(g(z+\xi))^2 \]

we get

\[\frac{\partial}{\partial z} \frac{1}{g'(Z)} = \frac{g''}{g'^2} \]

again with clipped Z

double g_s_expand2 (double z, double xsi)
 

\[ g'(z) = 1-(z+\xi)^2 \]

which is the series expansion to the second order

double g_s_inv_expand2 (double z, double xsi)
 

\[ \frac{1}{g'(z)} \approx 1+(z+\xi)^2 \]

with geometric series approximation

double g_ss_div_s_expand2 (double z, double xsi)
 

\[ \frac{g''(z)}{g'(z)} \approx 2(z+\xi)(1+(z+\xi)^2) \]

with geometric series approximation

double squash (double z)
 squashing function (-0.1 to 0.1), to protect against to large weight updates
double squash (void *d, double z)
 squashing function with adjustable clipping size, to protect against too large weight updates


Function Documentation

double derive_g_s_inv_exact_clip ( double  z,
double  xsi 
) [inline]

with

\[ g'(z) = 1-(g(z+\xi))^2 \]

we get

\[\frac{\partial}{\partial z} \frac{1}{g'(Z)} = \frac{g''}{g'^2} \]

again with clipped Z

double g ( double  z  )  [inline]

neuron transfer function

double g_derivative ( double  z  )  [inline]

first dervative with smoothing for large z

double g_s ( double  z,
double  xsi 
) [inline]

\[ g'(z+xsi) = 1-(tanh(z+xsi))^2 \]

with additional clipping

double g_s ( double  z  )  [inline]

first dervative

double g_s_expand2 ( double  z,
double  xsi 
) [inline]

\[ g'(z) = 1-(z+\xi)^2 \]

which is the series expansion to the second order

double g_s_inv ( double  z  )  [inline]

inverse of the first derivative

double g_s_inv_expand2 ( double  z,
double  xsi 
) [inline]

\[ \frac{1}{g'(z)} \approx 1+(z+\xi)^2 \]

with geometric series approximation

double g_s_soft ( double  z,
double  xsi 
) [inline]

soft version:

\[ g'(z+xsi) = 1/(1+(z+xsi)^2 \]

with additional clipping

double g_ss_div_s ( double  z,
double  xsi 
) [inline]

an exact formula for g''/g'= -2g(Z), with clipped Z = z+xsi

double g_ss_div_s_expand2 ( double  z,
double  xsi 
) [inline]

\[ \frac{g''(z)}{g'(z)} \approx 2(z+\xi)(1+(z+\xi)^2) \]

with geometric series approximation

double g_ss_div_s_soft ( double  z,
double  xsi 
) [inline]

an soft formula for g''/g' = -2Z, with clipped Z = z+xsi

double sqr ( double  x  )  [inline]

double squash ( void *  d,
double  z 
) [inline]

squashing function with adjustable clipping size, to protect against too large weight updates

double squash ( double  z  )  [inline]

squashing function (-0.1 to 0.1), to protect against to large weight updates


Generated on Fri Oct 30 16:29:02 2009 for Robot Simulator of the Robotics Group for Self-Organization of Control by  doxygen 1.4.7