modelwithmemoryadapter.h

Go to the documentation of this file.
00001 /***************************************************************************
00002  *   Copyright (C) 2005-2011 LpzRobots development team                    *
00003  *    Georg Martius  <georg dot martius at web dot de>                     *
00004  *    Frank Guettler <guettler at informatik dot uni-leipzig dot de        *
00005  *    Frank Hesse    <frank at nld dot ds dot mpg dot de>                  *
00006  *    Ralf Der       <ralfder at mis dot mpg dot de>                       *
00007  *                                                                         *
00008  *   This program is free software; you can redistribute it and/or modify  *
00009  *   it under the terms of the GNU General Public License as published by  *
00010  *   the Free Software Foundation; either version 2 of the License, or     *
00011  *   (at your option) any later version.                                   *
00012  *                                                                         *
00013  *   This program is distributed in the hope that it will be useful,       *
00014  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
00015  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the         *
00016  *   GNU General Public License for more details.                          *
00017  *                                                                         *
00018  *   You should have received a copy of the GNU General Public License     *
00019  *   along with this program; if not, write to the                         *
00020  *   Free Software Foundation, Inc.,                                       *
00021  *   59 Temple Place - Suite 330, Boston, MA  02111-1307, USA.             *
00022  *                                                                         *
00023  ***************************************************************************/
00024 #ifndef __MODELWITHMEMORYADAPTER_H
00025 #define __MODELWITHMEMORYADAPTER_H
00026 
00027 #include <vector>
00028 
00029 #include "invertablemodel.h"
00030 
00031 /// multi layer neural network with configurable activation functions
00032 class ModelWithMemoryAdapter : public InvertableModel {
00033 public: 
00034   /**
00035      @param model pointer to model to accomplish by memory
00036      @param memorySize number of pattern that are stored
00037      @param numPatternsPerStep number of past patterns to learn each step
00038   */
00039   ModelWithMemoryAdapter(InvertableModel* model, int memorySize, int numPatternsPerStep);
00040   virtual ~ModelWithMemoryAdapter(){ }
00041 
00042   virtual void init(unsigned int inputDim, unsigned  int outputDim, 
00043                     double unit_map = 0.0, RandGen* randGen = 0);
00044 
00045   /**
00046      learn the input output mapping but also learn mappings from the memory.
00047      \see InvertableModel::learn
00048    */
00049   virtual const matrix::Matrix learn (const matrix::Matrix& input, 
00050                                       const matrix::Matrix& nom_output, 
00051                                       double learnRateFactor = 1);
00052 
00053   /* ********* Delegations *****************/
00054 
00055   virtual const matrix::Matrix process (const matrix::Matrix& input){
00056     return model->process(input);
00057   }
00058 
00059   virtual const matrix::Matrix response(const matrix::Matrix& input) const{
00060     return model->response(input);
00061   }
00062 
00063   virtual const matrix::Matrix inversion(const matrix::Matrix& input, 
00064                                          const matrix::Matrix& xsi) const{
00065     return model->inversion(input, xsi);
00066   }
00067   virtual unsigned int getInputDim() const { 
00068     return model->getInputDim();
00069   }
00070   virtual unsigned int getOutputDim() const { 
00071     return model->getOutputDim();
00072   }
00073   virtual void damp(double damping) { model->damp(damping);}
00074 
00075   /* ************** Accessors **********************************/
00076 
00077   Inspectable* getModel(){
00078     return model;
00079   }
00080   const Inspectable* getModel() const {
00081     return model;
00082   }
00083 
00084 
00085   /* *************  STOREABLE **********************************/
00086   /// stores the layer binary into file stream
00087   bool store(FILE* f) const { return model->store(f);}
00088   /// restores the layer binary from file stream
00089   bool restore(FILE* f){ return model->restore(f);}
00090 
00091   /* ************* Inspectable **********************************/
00092   virtual iparamkeylist getInternalParamNames() const { return model->getInternalParamNames();}
00093   virtual iparamvallist getInternalParams() const { return model->getInternalParams();}
00094   virtual ilayerlist getStructuralLayers() const { return model->getStructuralLayers();}
00095   virtual iconnectionlist getStructuralConnections() const {
00096     return model->getStructuralConnections();
00097   }
00098 
00099 
00100 protected:
00101   // Pattern
00102   struct Pat{
00103     Pat(){}
00104     Pat(const matrix::Matrix& inp, const matrix::Matrix& out, const double& lrFactor):
00105       inp(inp), out(out), lrFactor(lrFactor){}
00106     matrix::Matrix inp;
00107     matrix::Matrix out;
00108     double lrFactor;
00109   };
00110 
00111   InvertableModel* model;
00112   int memorySize;
00113   int numPatternsPerStep;
00114   /// vector of input output mappings
00115   std::vector <Pat> memory;
00116   RandGen* randGen;
00117 };
00118 
00119 #endif
Generated on Thu Jun 28 14:45:36 2012 for Robot Simulator of the Robotics Group for Self-Organization of Control by  doxygen 1.6.3