00001 /*************************************************************************** 00002 * Copyright (C) 2005-2011 by * 00003 * Georg Martius <georg dot martius at web dot de> * 00004 * Frank Hesse <frank at nld dot ds dot mpg dot de> * 00005 * Ralf Der <ralfder at mis dot mpg dot de> * 00006 * * 00007 * ANY COMMERCIAL USE FORBIDDEN! * 00008 * LICENSE: * 00009 * This work is licensed under the Creative Commons * 00010 * Attribution-NonCommercial-ShareAlike 2.5 License. To view a copy of * 00011 * this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ * 00012 * or send a letter to Creative Commons, 543 Howard Street, 5th Floor, * 00013 * San Francisco, California, 94105, USA. * 00014 * * 00015 * This program is distributed in the hope that it will be useful, * 00016 * but WITHOUT ANY WARRANTY; without even the implied warranty of * 00017 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. * 00018 * * 00019 ***************************************************************************/ 00020 #ifndef __INVERTMOTORBIGMODEL_H 00021 #define __INVERTMOTORBIGMODEL_H 00022 00023 #include "invertmotorcontroller.h" 00024 00025 #include <assert.h> 00026 #include <cmath> 00027 00028 #include "matrix.h" 00029 #include "noisegenerator.h" 00030 #include "invertablemodel.h" 00031 00032 typedef struct InvertMotorBigModelConf { 00033 int buffersize; ///< buffersize size of the time-buffer for x,y,eta 00034 double cInit; ///< cInit size of the C matrix to initialised with. 00035 double cNonDiag; ///< cNonDiag is the size of the nondiagonal elements in respect to the diagonal (cInit) ones 00036 bool modelInit; ///< size of the unit-map strenght of the model 00037 bool useS; ///< useS decides whether to use the S matrix in addition to the A matrix 00038 bool someInternalParams; ///< someInternalParams if true only some internal parameters are exported, otherwise all 00039 00040 double modelCompliant; ///< learning factor for model (or sensor) compliant learning 00041 00042 InvertableModel* model; ///< model used as world model 00043 } InvertMotorBigModelConf; 00044 00045 /** 00046 * class for robot controller is based on InvertMotorNStep 00047 * 00048 * - direct inversion 00049 * 00050 * - motor space 00051 * 00052 * - multilayer,nonlinear model 00053 */ 00054 class InvertMotorBigModel : public InvertMotorController { 00055 00056 public: 00057 InvertMotorBigModel(const InvertMotorBigModelConf& conf = getDefaultConf()); 00058 virtual void init(int sensornumber, int motornumber, RandGen* randGen = 0); 00059 00060 virtual ~InvertMotorBigModel(); 00061 00062 /// returns the number of sensors the controller was initialised with or 0 if not initialised 00063 virtual int getSensorNumber() const { return number_sensors; } 00064 /// returns the mumber of motors the controller was initialised with or 0 if not initialised 00065 virtual int getMotorNumber() const { return number_motors; } 00066 00067 /// performs one step (includes learning). 00068 /// Calulates motor commands from sensor inputs. 00069 virtual void step(const sensor* , int number_sensors, motor* , int number_motors); 00070 00071 /// performs one step without learning. Calulates motor commands from sensor inputs. 00072 virtual void stepNoLearning(const sensor* , int number_sensors, 00073 motor* , int number_motors); 00074 00075 00076 /************** STOREABLE **********************************/ 00077 /** stores the controller values to a given file. */ 00078 virtual bool store(FILE* f) const; 00079 /** loads the controller values from a given file. */ 00080 virtual bool restore(FILE* f); 00081 00082 /************** INSPECTABLE ********************************/ 00083 virtual iparamkeylist getInternalParamNames() const; 00084 virtual iparamvallist getInternalParams() const; 00085 virtual ilayerlist getStructuralLayers() const; 00086 virtual iconnectionlist getStructuralConnections() const; 00087 00088 /**** TEACHING ****/ 00089 /** The given motor teaching signal is used for this timestep. 00090 It is used as a feed forward teaching signal for the controller. 00091 Please note, that the teaching signal has to be given each timestep 00092 for a continuous teaching process. 00093 */ 00094 virtual void setMotorTeachingSignal(const motor* teaching, int len); 00095 00096 /** The given sensor teaching signal (distal learning) is used for this timestep. 00097 First the belonging motor teachung signal is calculated by the inverse model. 00098 See setMotorTeachingSignal 00099 */ 00100 virtual void setSensorTeachingSignal(const sensor* teaching, int len); 00101 00102 00103 static InvertMotorBigModelConf getDefaultConf(){ 00104 InvertMotorBigModelConf c; 00105 c.buffersize = 50; 00106 c.cInit = 1.0; 00107 c.cNonDiag = 0; 00108 c.modelInit = 1.0; 00109 c.someInternalParams = true; 00110 c.useS = false; 00111 c.modelCompliant = 0; 00112 c.model = 0; 00113 return c; 00114 } 00115 00116 void getLastMotors(motor* motors, int len); 00117 00118 protected: 00119 unsigned short number_sensors; 00120 unsigned short number_motors; 00121 00122 matrix::Matrix A; ///< Model Matrix (motors to sensors) 00123 matrix::Matrix S; ///< additional Model Matrix (sensors derivatives to sensors) 00124 matrix::Matrix C; ///< Controller Matrix 00125 matrix::Matrix H; ///< Controller Bias 00126 NoiseGenerator* BNoiseGen; ///< Noisegenerator for noisy bias 00127 matrix::Matrix R; ///< C*A 00128 matrix::Matrix SmallID; ///< small identity matrix in the dimension of R 00129 matrix::Matrix xsi; ///< current output error 00130 double xsi_norm; ///< norm of matrix 00131 double xsi_norm_avg; ///< average norm of xsi (used to define whether Modell learns) 00132 double pain; ///< if the modelling error (xsi) is too high we have a pain signal 00133 matrix::Matrix* x_buffer; 00134 matrix::Matrix* y_buffer; 00135 matrix::Matrix* eta_buffer; 00136 matrix::Matrix zero_eta; // zero initialised eta 00137 matrix::Matrix x_smooth; 00138 // matrix::Matrix z; ///< membrane potential 00139 matrix::Matrix y_teaching; ///< teaching motor signal 00140 bool useTeaching; ///< flag whether there is an actual teachning signal or not 00141 int t_rand; ///< initial random time to avoid syncronous management of all controllers 00142 00143 00144 int managementInterval; ///< interval between subsequent management function calls 00145 paramval inhibition; ///< inhibition strength for sparce kwta strategy (is scaled with epsC) 00146 paramval kwta; ///< (int) number of synapses that get strengthend 00147 paramval limitRF; ///< (int) receptive field of motor neurons (number of offcenter sensors) if null then no limitation. Mutual exclusive with inhibition 00148 paramval dampS; ///< damping of S matrix 00149 00150 InvertMotorBigModelConf conf; 00151 00152 /// puts the sensors in the ringbuffer, generate controller values and put them in the 00153 // ringbuffer as well 00154 virtual void fillBuffersAndControl(const sensor* x_, int number_sensors, 00155 motor* y_, int number_motors); 00156 00157 /// calculates the first shift into the motor space useing delayed motor values. 00158 // @param delay 0 for no delay and n>0 for n timesteps delay in the time loop 00159 virtual void calcEtaAndBufferIt(int delay); 00160 00161 /// learn H,C with motors y and corresponding sensors x 00162 virtual void learnController(); 00163 00164 /// calculates the Update for C and H 00165 // @param y_delay timesteps to delay the y-values. (usually 0) 00166 // Please note that the delayed values are NOT used for the error calculation 00167 // (this is done in calcXsi()) 00168 virtual void calcCandHUpdates(matrix::Matrix& C_update, matrix::Matrix& H_update, int y_delay); 00169 00170 /// updates the matrix C and H 00171 virtual void updateCandH(const matrix::Matrix& C_update, const matrix::Matrix& H_update, double squashSize); 00172 00173 /// learn A, (and S) using motors y and corresponding sensors x 00174 // @param delay 0 for no delay and n>0 for n timesteps delay in the time loop 00175 virtual void learnModel(int delay); 00176 00177 /// handles inhibition damping etc. 00178 virtual void management(); 00179 00180 /// returns controller output for given sensor values 00181 virtual matrix::Matrix calculateControllerValues(const matrix::Matrix& x_smooth); 00182 00183 /** Calculates first and second derivative and returns both in on matrix (above). 00184 We use simple discrete approximations: 00185 \f[ f'(x) = (f(x) - f(x-1)) / 2 \f] 00186 \f[ f''(x) = f(x) - 2f(x-1) + f(x-2) \f] 00187 where we have to go into the past because we do not have f(x+1). The scaling can be neglegted. 00188 */ 00189 matrix::Matrix calcDerivatives(const matrix::Matrix* buffer, int delay); 00190 00191 public: 00192 /** k-winner take all inhibition for synapses. k largest synapses are strengthed and the rest are inhibited. 00193 strong synapes are scaled by 1+(damping/k) and weak synapses are scaled by 1-(damping/(n-k)) where n is the 00194 number of synapes 00195 @param weightmatrix reference to weight matrix. Synapses for a neuron are in one row. 00196 The inhibition is done for all rows independently 00197 @param k number of synapes to strengthen 00198 @param damping strength of supression and exitation (typically 0.001) 00199 */ 00200 void kwtaInhibition(matrix::Matrix& weightmatrix, unsigned int k, double damping); 00201 00202 /** sets all connections to zero which are further away then rfSize. 00203 If rfSize == 1 then only main diagonal is left. 00204 If rfSize = 2: main diagonal and upper and lower side diagonal are kept and so on and so forth. 00205 */ 00206 void limitC(matrix::Matrix& weightmatrix, unsigned int rfSize); 00207 00208 }; 00209 00210 #endif