00001 /*************************************************************************** 00002 * Copyright (C) 2005 by Robot Group Leipzig * 00003 * martius@informatik.uni-leipzig.de * 00004 * fhesse@informatik.uni-leipzig.de * 00005 * der@informatik.uni-leipzig.de * 00006 * frankguettler@gmx.de * 00007 * * 00008 * This program is free software; you can redistribute it and/or modify * 00009 * it under the terms of the GNU General Public License as published by * 00010 * the Free Software Foundation; either version 2 of the License, or * 00011 * (at your option) any later version. * 00012 * * 00013 * This program is distributed in the hope that it will be useful, * 00014 * but WITHOUT ANY WARRANTY; without even the implied warranty of * 00015 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * 00016 * GNU General Public License for more details. * 00017 * * 00018 * You should have received a copy of the GNU General Public License * 00019 * along with this program; if not, write to the * 00020 * Free Software Foundation, Inc., * 00021 * 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. * 00022 *************************************************************************** 00023 * * 00024 * DESCRIPTION * 00025 * * 00026 * $Log: complexmeasure.h,v $ 00027 * Revision 1.2 2009/08/10 07:39:31 guettler 00028 * -example use of new SparseArray. 00029 * -some test implementations for entropy (to be tested, corrected) 00030 * 00031 * Revision 1.1 2009/03/27 06:16:58 guettler 00032 * support for gcc 4.3 compatibility (has to be checked), StatisticTools moves from utils to statistictools 00033 * 00034 * Revision 1.3 2008/02/14 14:43:09 der 00035 * made some enhancements 00036 * 00037 * Revision 1.2 2008/01/17 09:59:27 der 00038 * complexmeasure: preparations made for predictive information, 00039 * fixed a minor bug 00040 * statisticmeasure, statistictools: added support for adding 00041 * std::list<AbstractMeasure*> to StatisticTools, some minor 00042 * improvements 00043 * 00044 * Revision 1.1 2007/12/06 10:18:10 der 00045 * AbstractMeasure is now a abstract type for Measures, 00046 * StatisticTools now supports AbstractMeasures, 00047 * StatisticalMeasure, ComplexMeasure now derived from 00048 * AbstractMeasure, 00049 * ComplexMeasure provides support for calculation e.g. entropy, 00050 * uses Discretisizer, 00051 * Discretisizer is a stand-alone class for support of discretisizing values 00052 * TrackableMeasure derived from ComplexMeasure and provides support for calculating complex measures for Trackable objects 00053 * 00054 * Revision 1.3 2007/09/28 08:48:21 robot3 00055 * corrected some minor bugs, files are still in develop status 00056 * 00057 * Revision 1.2 2007/09/27 10:49:39 robot3 00058 * removed some minor bugs, 00059 * added CONVergence test 00060 * changed little things for support of the new WSM 00061 * 00062 * Revision 1.1 2007/05/07 21:01:31 robot3 00063 * statistictools is a class for easy visualization of measurements of observed values 00064 * it is possible to add the observed value itself with mode ID 00065 * 00066 * * 00067 ***************************************************************************/ 00068 #ifndef _COMPLEX_MEASURE_H 00069 #define _COMPLEX_MEASURE_H 00070 00071 #include "abstractmeasure.h" 00072 #include <list> 00073 00074 #include "sparsearray.h" 00075 00076 /** measure modes of complex measures. 00077 */ 00078 enum ComplexMeasureMode { 00079 /// returns the entropy of the value, uses update formula, needs O(1) 00080 ENT, 00081 /// returns the entropy of the value, uses normal formula, needs O(n) or O(m*n) 00082 ENTSLOW, 00083 /// returns the mutual information of two values, uses update formula, needs O(1) 00084 MI, 00085 /// returns the predictive information of two or more values 00086 PINF 00087 }; 00088 00089 class Discretisizer; 00090 00091 class ComplexMeasure : public AbstractMeasure { 00092 00093 public: 00094 00095 /** 00096 * creates a new complex measure. the calculated things are such like 00097 * mutual information, entropy, joint entropy and so on. 00098 * it`s possible to add new ones, see above for the 00099 * ComplexMeasureModes. 00100 * Don"t forget! to add observed values! with the method @see addObservable 00101 * @param measureName the name of the measure, needed for PlotOptions and 00102 * HUDSM 00103 * @param mode the measure you like to have 00104 * @param numberBins in earlier versions named as intervalCount. For complex 00105 * measures the observedValue has to be discretisized, this does the 00106 * ComplexMeasure with the class Discretisizer for you. 00107 */ 00108 ComplexMeasure( const char* measureName, ComplexMeasureMode mode, int numberBins ); 00109 00110 00111 00112 /** 00113 * adds a observed variable to the measure. 00114 * @param observedValue address of the observed value 00115 * @param minValue minimum value the observed value can become 00116 * @param maxValue maximum value the observed value can become 00117 */ 00118 virtual void addObservable( double& observedValue, double minValue, double maxValue ); 00119 00120 virtual ~ComplexMeasure(); 00121 00122 /** 00123 * defined by AbstractMeasure. This method is called from StatisticTools 00124 * for updating the measure in every simStep (ODE). 00125 */ 00126 virtual void step(); 00127 00128 00129 protected: 00130 std::list<double*> observedValueList; // stores the adresses of the observedValues 00131 std::list<Discretisizer*> discretisizerList; // stores the Discretisizer 00132 ComplexMeasureMode mode; 00133 int numberBins; 00134 long fSize; // size of F 00135 int historySize; // size of binNumberHistory 00136 // int *F; // stores the frequencies as a linear vector 00137 int *binNumberHistory; // holds the binNumbers as an history, for predictive information 2 values are enough 00138 int historyIndex; // index of last stored value 00139 int *historyIndexList; // indexes of relevant stored values 00140 int historyIndexNumber; // number of indexes stored in historyIndexList 00141 int historyInterval; // interval between two different histoy indexes 00142 00143 // new: use SparseArray backed by HashMap instead of normal array 00144 matrix::SparseArray<long, int> F; 00145 // calculation methods 00146 00147 /** 00148 * calculates the Predictive Information 00149 */ 00150 void calculatePInf(); 00151 00152 00153 /** 00154 * updates the entropy. uses update rule with O(1) costs 00155 * @param binNumber the bin number 00156 */ 00157 void updateEntropy( int binNumber); 00158 00159 /** 00160 * computes the entropy. uses the normal rule with O(m*n*o) costs 00161 */ 00162 void computeEntropy(); 00163 00164 00165 /** 00166 * inits F, neccessary after each call of addObservable() 00167 * 00168 */ 00169 void initF(); 00170 00171 00172 }; 00173 00174 #endif