#include <invertmotorcontroller.h>
Inherits AbstractController.
Inherited by BasicController, InvertMotorBigModel, InvertMotorNStep, and InvertMotorSpace.
Inheritance diagram for InvertMotorController:


Public Member Functions | |
| InvertMotorController (unsigned short buffersize, const std::string &name, const std::string &revision) | |
| virtual paramval | getParam (const paramkey &key) const |
| virtual bool | setParam (const paramkey &key, paramval val) |
| virtual paramlist | getParamList () const |
| The list of all parameters with there value as allocated lists. | |
Protected Member Functions | |
| void | putInBuffer (matrix::Matrix *buffer, const matrix::Matrix &vec, int delay=0) |
| virtual matrix::Matrix | calculateDelayedValues (const matrix::Matrix *buffer, int number_steps_of_delay_) |
| calculate delayed values | |
| virtual matrix::Matrix | calculateSmoothValues (const matrix::Matrix *buffer, int number_steps_for_averaging_) |
| calculate time-smoothed values | |
| virtual double | calcErrorFactor (const matrix::Matrix &e, bool loga, bool root) |
| calculates the error_factor for either logarithmic (E=ln(e^T*e)) or square (E=sqrt(e^t*e)) error | |
Static Protected Member Functions | |
| static double | g (double z) |
| neuron transfer function | |
Protected Attributes | |
| paramval | epsC |
| learning rate factor for controller learning | |
| paramval | desens |
| paramval | s4delay |
| number of timesteps of delay in the SML | |
| paramval | s4avg |
| number of timesteps used for smoothing the controller output values | |
| paramval | steps |
| number of timesteps is used for controller learning | |
| paramval | epsA |
| learning rate factor for model learning | |
| paramval | factorB |
| additional learning rate factor for model bias | |
| paramval | zetaupdate |
| paramval | dampA |
| damping term for model (0: no damping, 0.1 high damping) | |
| short | logaE |
| logarithmic error is used for learning 1: controller 2: model 3: both | |
| short | rootE |
| root error is used for learning 1: controller 2: model 3: both | |
| short | relativeE |
| if not 0: a relative error signal is used (xsi is normalised in respect to |y|) | |
| paramval | squashSize |
| size of the box, where the parameter updates are clipped to | |
| paramval | adaptRate |
| adaptation rate for learning rate adaptation | |
| paramval | nomUpdate |
| nominal update of controller in respect to matrix norm | |
| paramval | noiseB |
| size of the additional noise for model bias B | |
| paramval | noiseY |
| size of the additional noise for motor values | |
| paramval | teacher |
| factor for teaching signal | |
| int | t |
| unsigned short | buffersize |
| bool | initialised |
Implements standart configureable interface for some useful parameters like epsC, epsA, s4avg ...
| InvertMotorController | ( | unsigned short | buffersize, | |
| const std::string & | name, | |||
| const std::string & | revision | |||
| ) | [inline] |
| virtual double calcErrorFactor | ( | const matrix::Matrix & | e, | |
| bool | loga, | |||
| bool | root | |||
| ) | [inline, protected, virtual] |
calculates the error_factor for either logarithmic (E=ln(e^T*e)) or square (E=sqrt(e^t*e)) error
| virtual matrix::Matrix calculateDelayedValues | ( | const matrix::Matrix * | buffer, | |
| int | number_steps_of_delay_ | |||
| ) | [inline, protected, virtual] |
calculate delayed values
| virtual matrix::Matrix calculateSmoothValues | ( | const matrix::Matrix * | buffer, | |
| int | number_steps_for_averaging_ | |||
| ) | [inline, protected, virtual] |
calculate time-smoothed values
| static double g | ( | double | z | ) | [inline, static, protected] |
neuron transfer function
Reimplemented in InvertMotorBigModel.
| virtual paramlist getParamList | ( | ) | const [inline, virtual] |
The list of all parameters with there value as allocated lists.
Reimplemented from Configurable.
Reimplemented in InvertMotorBigModel.
| void putInBuffer | ( | matrix::Matrix * | buffer, | |
| const matrix::Matrix & | vec, | |||
| int | delay = 0 | |||
| ) | [inline, protected] |
Reimplemented in BasicController, and InvertMotorBigModel.
unsigned short buffersize [protected] |
bool initialised [protected] |
short logaE [protected] |
logarithmic error is used for learning 1: controller 2: model 3: both
short relativeE [protected] |
if not 0: a relative error signal is used (xsi is normalised in respect to |y|)
short rootE [protected] |
root error is used for learning 1: controller 2: model 3: both
paramval squashSize [protected] |
size of the box, where the parameter updates are clipped to
int t [protected] |
paramval zetaupdate [protected] |
1.4.7