AbstractModel Class Reference

abstract class (interface) for a model that can be used by a controller More...

#include <abstractmodel.h>

Inherits Configurable, and Storeable.

Inherited by FeedForwardNN, and InvertableModel.

Inheritance diagram for AbstractModel:

Inheritance graph
[legend]
Collaboration diagram for AbstractModel:

Collaboration graph
[legend]
List of all members.

Public Member Functions

 AbstractModel ()
virtual ~AbstractModel ()
virtual void init (unsigned int inputDim, unsigned int outputDim, double unit_map=0.0)=0
 initialisation of the network with the given number of input and output units
virtual const matrix::Matrix process (const matrix::Matrix &input)=0
 passive processing of the input (this function is not constant since a recurrent network for example might change internal states
virtual const matrix::Matrix learn (const matrix::Matrix &input, const matrix::Matrix &nom_output, double learnRateFactor=1)=0
virtual unsigned int getInputDim () const =0
 returns the number of input neurons
virtual unsigned int getOutputDim () const =0
 returns the number of output neurons

Detailed Description

abstract class (interface) for a model that can be used by a controller


Constructor & Destructor Documentation

AbstractModel  )  [inline]
 

virtual ~AbstractModel  )  [inline, virtual]
 


Member Function Documentation

virtual unsigned int getInputDim  )  const [pure virtual]
 

returns the number of input neurons

Implemented in MultiLayerFFNN, and OneLayerFFNN.

virtual unsigned int getOutputDim  )  const [pure virtual]
 

returns the number of output neurons

Implemented in MultiLayerFFNN, and OneLayerFFNN.

virtual void init unsigned int  inputDim,
unsigned int  outputDim,
double  unit_map = 0.0
[pure virtual]
 

initialisation of the network with the given number of input and output units

Parameters:
inputDim length of input vector
outputDim length of output vector
unit_map if 0 the parametes are choosen randomly. Otherwise the model is initialised to represent a unit_map with the given response strength.

Implemented in Elman, MultiLayerFFNN, and OneLayerFFNN.

virtual const matrix::Matrix learn const matrix::Matrix input,
const matrix::Matrix nom_output,
double  learnRateFactor = 1
[pure virtual]
 

Implemented in Elman, MultiLayerFFNN, and OneLayerFFNN.

virtual const matrix::Matrix process const matrix::Matrix input  )  [pure virtual]
 

passive processing of the input (this function is not constant since a recurrent network for example might change internal states

Implemented in Elman, MultiLayerFFNN, and OneLayerFFNN.


The documentation for this class was generated from the following file:
Generated on Tue Jan 16 02:14:45 2007 for Robotsystem of the Robot Group Leipzig by doxygen 1.3.8