#include <onelayerffnn.h>
Inherits FeedForwardNN.
Inheritance diagram for OneLayerFFNN:


Public Member Functions | |
| OneLayerFFNN (double eps, double factor_bias=0.1) | |
| Uses linear activation function. | |
| OneLayerFFNN (double eps, double factor_bias, ActivationFunction actfun, ActivationFunction dactfun) | |
| virtual | ~OneLayerFFNN () |
| virtual void | init (unsigned int inputDim, unsigned int outputDim, double unit_map=0.0) |
| initialisation of the network with the given number of input and output units | |
| virtual const matrix::Matrix | process (const matrix::Matrix &input) |
| passive processing of the input | |
| virtual const matrix::Matrix | learn (const matrix::Matrix &input, const matrix::Matrix &nom_output, double learnRateFactor=1) |
| performs learning and returns the network output before learning | |
| virtual unsigned int | getInputDim () const |
| returns the number of input neurons | |
| virtual unsigned int | getOutputDim () const |
| returns the number of output neurons | |
| virtual const matrix::Matrix & | getWeights () const |
| virtual const matrix::Matrix & | getBias () const |
| virtual void | damp (double damping) |
| damps the weights and the biases by multiplying (1-damping) | |
| bool | store (FILE *f) const |
| stores the layer binary into file stream | |
| bool | restore (FILE *f) |
| restores the layer binary from file stream | |
| virtual paramkey | getName () const |
| return the name of the object | |
| virtual paramval | getParam (const paramkey key) const |
| virtual bool | setParam (const paramkey key, paramval val) |
| virtual paramlist | getParamList () const |
| The list of all parameters with there value as allocated lists. | |
Private Attributes | |
| double | eps |
| double | factor_bias |
| ActivationFunction | actfun |
| callback activation function | |
| ActivationFunction | dactfun |
| first derivative of the activation function | |
| bool | initialised |
| matrix::Matrix | weights |
| matrix::Matrix | bias |
|
||||||||||||
|
Uses linear activation function.
|
|
||||||||||||||||||||
|
|
|
|
|
|
|
damps the weights and the biases by multiplying (1-damping)
Implements FeedForwardNN.
|
|
|
|
|
|
returns the number of input neurons
Implements AbstractModel.
|
|
|
return the name of the object
Reimplemented from Configurable.
|
|
|
returns the number of output neurons
Implements AbstractModel.
|
|
|
|
|
|
The list of all parameters with there value as allocated lists.
Reimplemented from Configurable.
|
|
|
|
|
||||||||||||||||
|
initialisation of the network with the given number of input and output units
Implements AbstractModel.
|
|
||||||||||||||||
|
performs learning and returns the network output before learning
Implements AbstractModel.
|
|
|
passive processing of the input
Implements AbstractModel.
|
|
|
restores the layer binary from file stream
Implements Storeable.
|
|
||||||||||||
|
|
|
|
stores the layer binary into file stream
Implements Storeable.
|
|
|
callback activation function
|
|
|
|
|
|
first derivative of the activation function
|
|
|
|
|
|
|
|
|
|
|
|
|
1.3.8