#include <multilayerffnn.h>
Inherits FeedForwardNN, and InvertableModel.
Inherited by Elman.
Inheritance diagram for MultiLayerFFNN:


| Public Member Functions | |
| MultiLayerFFNN (double eps, const std::vector< Layer > &layers) | |
| virtual | ~MultiLayerFFNN () | 
| virtual void | init (unsigned int inputDim, unsigned int outputDim, double unit_map=0.0) | 
| initialisation of the network with the given number of input and output units | |
| virtual const matrix::Matrix | process (const matrix::Matrix &input) | 
| passive processing of the input | |
| virtual const matrix::Matrix | learn (const matrix::Matrix &input, const matrix::Matrix &nom_output, double learnRateFactor=1) | 
| performs learning and returns the network output before learning (process should be called before) | |
| virtual const matrix::Matrix | response (const matrix::Matrix &input) const | 
| virtual unsigned int | getInputDim () const | 
| returns the number of input neurons | |
| virtual unsigned int | getOutputDim () const | 
| returns the number of output neurons | |
| virtual void | damp (double damping) | 
| damps the weights and the biases by multiplying (1-damping) | |
| bool | store (FILE *f) const | 
| stores the layer binary into file stream | |
| bool | restore (FILE *f) | 
| restores the layer binary from file stream | |
| virtual paramkey | getName () const | 
| return the name of the object | |
| virtual paramval | getParam (const paramkey &key) const | 
| returns the value of the requested parameter or 0 (+ error message to stderr) if unknown. | |
| virtual bool | setParam (const paramkey &key, paramval val) | 
| sets the value of the given parameter or does nothing if unknown. | |
| virtual paramlist | getParamList () const | 
| The list of all parameters with there value as allocated lists. | |
| virtual const Layer & | getLayer (unsigned int layer) const | 
| virtual const matrix::Matrix & | getWeights (unsigned int to_layer) const | 
| virtual const matrix::Matrix & | getBias (unsigned int of_layer) const | 
| Protected Attributes | |
| double | eps | 
| std::vector< Layer > | layers | 
| std::vector< matrix::Matrix > | weights | 
| std::vector< matrix::Matrix > | bias | 
| std::vector< matrix::Matrix > | ys | 
| std::vector< matrix::Matrix > | zs | 
| bool | initialised | 
| 
 | ||||||||||||
| 
 
 | 
| 
 | 
| 
 | 
| 
 | 
| damps the weights and the biases by multiplying (1-damping) 
 Implements FeedForwardNN. 
 | 
| 
 | 
| 
 | 
| 
 | 
| returns the number of input neurons 
 Implements AbstractModel. 
 | 
| 
 | 
| 
 | 
| 
 | 
| return the name of the object 
 Reimplemented from Configurable. 
 Reimplemented in Elman. 
 | 
| 
 | 
| returns the number of output neurons 
 Implements AbstractModel. 
 | 
| 
 | 
| returns the value of the requested parameter or 0 (+ error message to stderr) if unknown. 
 Reimplemented from Configurable. 
 | 
| 
 | 
| The list of all parameters with there value as allocated lists. 
 
 Reimplemented from Configurable. 
 | 
| 
 | 
| 
 | 
| 
 | ||||||||||||||||
| initialisation of the network with the given number of input and output units 
 Implements AbstractModel. 
 Reimplemented in Elman. 
 | 
| 
 | ||||||||||||||||
| performs learning and returns the network output before learning (process should be called before) 
 Implements AbstractModel. 
 Reimplemented in Elman. 
 | 
| 
 | 
| passive processing of the input 
 Implements AbstractModel. 
 Reimplemented in Elman. 
 | 
| 
 | 
| 
 
 Implements InvertableModel. 
 | 
| 
 | 
| restores the layer binary from file stream 
 Implements Storeable. 
 Reimplemented in Elman. 
 | 
| 
 | ||||||||||||
| sets the value of the given parameter or does nothing if unknown. 
 Reimplemented from Configurable. 
 | 
| 
 | 
| stores the layer binary into file stream 
 Implements Storeable. 
 Reimplemented in Elman. 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
| 
 | 
 1.3.8
 1.3.8