invertnchannelcontroller.h

Go to the documentation of this file.
00001 /***************************************************************************
00002  *   Copyright (C) 2005 by Robot Group Leipzig                             *
00003  *    martius@informatik.uni-leipzig.de                                    *
00004  *    fhesse@informatik.uni-leipzig.de                                     *
00005  *    der@informatik.uni-leipzig.de                                        *
00006  *                                                                         *
00007  *   ANY COMMERCIAL USE FORBIDDEN!                                         *
00008  *   LICENSE:                                                              *
00009  *   This work is licensed under the Creative Commons                      *
00010  *   Attribution-NonCommercial-ShareAlike 2.5 License. To view a copy of   *
00011  *   this license, visit http://creativecommons.org/licenses/by-nc-sa/2.5/ *
00012  *   or send a letter to Creative Commons, 543 Howard Street, 5th Floor,   *
00013  *   San Francisco, California, 94105, USA.                                *
00014  *                                                                         *
00015  *   This program is distributed in the hope that it will be useful,       *
00016  *   but WITHOUT ANY WARRANTY; without even the implied warranty of        *
00017  *   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.                  *
00018  *                                            * 
00019  *                                                                         *
00020  *   $Log: invertnchannelcontroller.h,v $
00021  *   Revision 1.21  2008/05/30 11:58:27  martius
00022  *   use cmath instead of math.h
00023  *
00024  *   Revision 1.20  2008/04/17 14:54:45  martius
00025  *   randomGen added, which is a random generator with long period and an
00026  *    internal state. Each Agent has an instance and passed it to the controller
00027  *    and the wiring. This is good for
00028  *   a) repeatability on agent basis,
00029  *   b) parallel execution as done in ode_robots
00030  *
00031  *   Revision 1.19  2006/12/11 18:14:14  martius
00032  *   delete for BNoise
00033  *   delete of buffers
00034  *
00035  *   Revision 1.18  2006/08/02 09:31:34  martius
00036  *   removed TODO
00037  *
00038  *   Revision 1.17  2006/07/20 17:14:35  martius
00039  *   removed std namespace from matrix.h
00040  *   storable interface
00041  *   abstract model and invertablemodel as superclasses for networks
00042  *
00043  *   Revision 1.16  2006/07/14 12:23:58  martius
00044  *   selforg becomes HEAD
00045  *
00046  *   Revision 1.14.6.4  2006/07/10 13:05:16  martius
00047  *   NON-COMMERICAL LICENSE added to controllers
00048  *
00049  *   Revision 1.14.6.3  2006/07/10 11:59:24  martius
00050  *   Matrixlib now in selforg
00051  *   no namespace std in header files
00052  *
00053  *   Revision 1.14.6.2  2006/01/18 16:48:35  martius
00054  *   stored and restore
00055  *
00056  *   Revision 1.14.6.1  2005/11/14 17:37:29  martius
00057  *   moved to selforg
00058  *
00059  *   Revision 1.14  2005/10/27 15:46:38  martius
00060  *   inspectable interface is expanded to structural information for network visualiser
00061  *
00062  *   Revision 1.13  2005/10/27 15:02:06  fhesse
00063  *   commercial use added
00064  *                                    *
00065  *                                                                         *
00066  ***************************************************************************/
00067 #ifndef __INVERTNCHANNELCONTROLLER_H
00068 #define __INVERTNCHANNELCONTROLLER_H
00069 
00070 #include "invertcontroller.h"
00071 #include "controller_misc.h"
00072 
00073 #include <assert.h>
00074 #include <cmath>
00075 
00076 #include <selforg/matrix.h>
00077 
00078 /**
00079  * class for robot controller that uses the georg's matrixlib for 
00080  *  direct matrix inversion for n channels 
00081  * (simple one layer networks)
00082  * 
00083  * Implements standart parameters: eps, rho, mu, stepnumber4avg, stepnumber4delay
00084  */
00085 class InvertNChannelController : public InvertController {
00086 
00087 public:
00088   InvertNChannelController(int _buffersize, bool _update_only_1=false);
00089   virtual void init(int sensornumber, int motornumber, RandGen* randGen = 0);
00090 
00091   virtual ~InvertNChannelController();
00092 
00093   /// returns the name of the object (with version number)
00094   virtual paramkey getName() const {return name; } 
00095   /// returns the number of sensors the controller was initialised with or 0 if not initialised
00096   virtual int getSensorNumber() const { return number_channels; }
00097   /// returns the mumber of motors the controller was initialised with or 0 if not initialised
00098   virtual int getMotorNumber() const  { return number_channels; }
00099 
00100   /// performs one step (includes learning). 
00101   /// Calulates motor commands from sensor inputs.
00102   virtual void step(const sensor* , int number_sensors, motor* , int number_motors);
00103 
00104 
00105   /// performs one step without learning. Calulates motor commands from sensor inputs.
00106   virtual void stepNoLearning(const sensor* , int number_sensors, 
00107                               motor* , int number_motors);
00108 
00109 
00110   /***** STOREABLE ****/
00111   /** stores the controller values to a given file. */
00112   virtual bool store(FILE* f) const;
00113   /** loads the controller values from a given file. */
00114   virtual bool restore(FILE* f);  
00115 
00116   // inspectable interface
00117   virtual std::list<iparamkey> getInternalParamNames() const;
00118   virtual std::list<iparamval> getInternalParams() const;
00119   virtual std::list<ILayer> getStructuralLayers() const;
00120   virtual std::list<IConnection> getStructuralConnections() const;
00121   
00122 
00123 protected:
00124   unsigned short number_channels;
00125   unsigned short buffersize;
00126   bool update_only_1;
00127 
00128   matrix::Matrix A; // Model Matrix
00129   matrix::Matrix C; // Controller Matrix
00130   matrix::Matrix h; // Controller Bias
00131   matrix::Matrix L; // Jacobi Matrix
00132   matrix::Matrix* x_buffer;
00133   matrix::Matrix* y_buffer;
00134   int t;
00135   paramkey name;
00136   
00137 
00138 /*   virtual void iteration(double *column, */
00139 /*                       double dommy[NUMBER_CHANNELS][NUMBER_CHANNELS], */
00140 /*                       double *improvment); */
00141 
00142   virtual double calculateE(const matrix::Matrix& x_delay, const matrix::Matrix& y_delay);      
00143 
00144   /// learn values h,C
00145   virtual void learn(const matrix::Matrix& x_delay, const matrix::Matrix& y_delay);
00146 
00147   virtual void learnmodel( const matrix::Matrix& y_delay);
00148 
00149   /// calculate delayed values
00150   virtual matrix::Matrix calculateDelayedValues(const matrix::Matrix* buffer, 
00151                                         unsigned int number_steps_of_delay_);
00152   virtual matrix::Matrix calculateSmoothValues(const matrix::Matrix* buffer, 
00153                                        unsigned int number_steps_for_averaging_);
00154 
00155   matrix::Matrix calculateControllerValues(const matrix::Matrix& x_smooth);
00156     
00157   // put new value in ring buffer
00158   void putInBuffer(matrix::Matrix* buffer, const matrix::Matrix& vec);
00159 
00160   /// neuron transfer function
00161   static double g(double z)
00162   {
00163     return tanh(z);
00164   };
00165 
00166   ///
00167   static double g_s(double z)
00168   {
00169     double k=tanh(z);
00170     return 1.0 - k*k;
00171     //    return 1.0 - tanh(z)*tanh(z);
00172   };
00173 
00174 
00175 
00176   /// squashing function, to protect against to large weight updates
00177   static double squash(double z)
00178   {
00179     return clip(z,-0.1,0.1);
00180     //    return z < -0.1 ? -0.1 : ( z > 0.1 ? 0.1 : z );
00181     //return 0.1 * tanh(10.0 * z);
00182   };
00183 };
00184 
00185 #endif
00186 
00187 

Generated on Tue Sep 16 22:00:22 2008 for Robotsystem of the Robot Group Leipzig by  doxygen 1.4.7