

Self-creation of autonomous robot behaviour

Ralf Der

Max Planck Institute for Mathematics in the Sciences Leipzig, Germany

Content of the talk

- Self-organization of robotic forms of life: Find a general principle which gives autonomous embodied agents a life of their own.
- Here: A systematic approach to self-organization by

 The maximization of predictive information
 The minimization of the time loop error
- Examples by videos:
 - Humanoids
 - Dogbots, Snakebots,
 - and other strange creatures

Robotic vs. biological forms of life

Biology

- Life developed through evolution.
- Evolution driven by the necessity of survival.
- Incremental development building on established solutions. No "playing around".

Evolution has no intrinsic drive for innovation

UNIVERSITÄT LEIPZIG

Evolution has no intrinsic drive for innovation

Example Crossopterygian – No evolution over billions of years

On the other hand, animals can be trained to performances never observed in nature.

Question: How to find a general drive for development

Robotic vs. biological forms of life

Biology

- Life developed through evolution.
- Evolution driven by the necessity of survival.
- Incremental development building on established solutions. No "playing around".

Robotic world

- Assume a world with unlimited resources, potential immortality, no externally given goals, ...
- Key question: Without external goals and drives, why should anybody do anything at all.
- An answer would us help to understand internal motivation, creativity, ...

Evolution has no intrinsic drive for innovation

Look for general paradigms for the creation of life like artifacts

Candidate Paradigms

Homeostasis (Cannon, Ashby): Life is a phenomenon of selfregulation with the aim of keeping internal parameters at a viable level. Overall *stasis* as aim.

- Autopoiesis The paradigm of self-creation and selfmaintenance. Formulated at the level of living cells (Varela, Marurana).
- Here: Self-creation of behavior. Given a robot of fixed morphology. Self-creation of behavior for instance by striving for increasing knowledge of the self and its (dynamical) embedding into the environment.
- Our approach homeokinesis one step into that direction.

Homeokinesis

- Aim is not overall *stasis* but a common kinetic regime of brain, body, and environment.
- How to achieve this? Steps:
- Generalize homeostasis: Give the agent a general drive for activity and stabilize behaviors that can be modeled well by an adaptive internal model.
- Homeokinesis is HS in a time inverted world.
 Arrow of time can be inverted in the model dynamics.
- This general idea can be condensed into a concrete objective function the so called time loop error.

AG Neuroinformatik und Robotik

- The time loop error is minimized by an agent behavior which is qualified by being both **sensitive** (creative) and predictable.
- Gradient descent on E drives both controller and model on-line.

The time loop error

• The ,,plug-and-play brain"

time loop error E

igodol

Realization

Take a neural network ("brain") realizing the controller

 $y_t = K(x_t;c)$

x_t: vector of sensor values y_t: vector of motor values
 c: controller parameters (synaptic strengths)

• and a neural network realizing the (adaptive!) self model

 $x_{t+1} = F(x_t, y_t) + modeling error$

The challenge, as we understand it, ctd.

- Find an objective function E depending only on
 - sensor values x,
 - controller output y,
 - and self model F
 - Define the dynamics of the controller parameters c as

 $\Delta c = -\varepsilon \, \frac{\partial E}{\partial c}$

- Connect the brain to an arbitrary body (real or simulated)
- Put the creature into an unknown, unstructured, dynamical environment.
- Brain body and environement form a self-referential dynamical system.

Paradigms for the objective function E

- Homeostasis (Ashby, ..., di Paolo): Keep certain intrinsic variables within survivable limits. E measures the distance to the target values.
- Perceptual control theory (Powell): Behavior as the control of Perception. E measures the lack of control over the perceptions.
- Information theoretic measures: (Lungarella, Sporns, Polani, Prokopenko, Ay et. al.): *Life as an information creating process* E = convenient information measure
- Dynamical complexity measures of trajectories in sensor space. E measures the dynamical complexity.
- Problems:
 - 1. and 2. not constructive
 - 3. to 4. need (extensive) sampling
 - but behaviors are contingent.

Our approaches

- The paradigm: A controler is optimal if it
 - 1. Amplifies sensorimotor variations but such that
 - 2. Future sensor values stay predictable

- Two approaches exemplified so far
 - 1. Predictive information = past-future mutual information in sensor space (most recent).
 - 2. Time loop error

Consider the time series of sensor values

 $x_t \in \mathbb{R}^n$ mit t = 0, 1, 2, ...

Separate at a given time t the series into past and future.

- Predictive information is the information we can have about the future from knowing the past.
- PI essentially is the mutual information between past and future.

$$PI = \left\langle \log\left(\frac{P(X_{future}, X_{past})}{P(X_{future})P(X_{past})}\right) \right\rangle$$

Predictive information II

Cases:

- Ordered behavior: PI is low.
- Random behavior: PI = 0.
- PI is maximal if the behavior is rich but still "under control", meaning predictable.
- This is what we need for the explorative robot.

UNIVERSITÄT LEIPZIG AG Neuroinformatik und Robotik Using the The time loop error Brain, body and environment form a self-referential dynamical system. motor $y_t = K(x_t; c)$ (next nominal joint angle) $\Delta c = -\varepsilon$

sensor x_t (current joint angle)

 $\frac{\partial E}{\partial E}$

Emergence of sensorimotor coordination in gravity driven machines

Inspired by Julius Popp

www.sphericalrobots.com

Sensors:

- 2. Infrared (above)
- 3. Gyroscope

UNIVERSITÄT LEIPZIG

Example – Snake bot I

A string of beads with an activated head – a system with two active and many passive degrees of freedom and very complicated physics

UNIVERSITÄT LEIPZIG

High dimensional robots: Snakes &Co.

LEIPZIG

UNIVERSITAT

Example – Terra autonomica

All robotic objects are controlled by our "plug-and-play brain" differing only in the number of sensors and motor neurons. AG Neuroinformatik und Robotik

Application – The self-rescue scenario

Our robots manage to free themselves from various impasse situation.

Take our "brain" as a rescue controller if a conventional controller has ridden the robot into an impasse.

Future work: Guided self-organization

- So far the behaviors are without goal, just emerging.
- Self-organisation by the principle of homeokinesis guided by external cues.
- First results: Pirouette mode of the spherical robot, ...
- Enhanced probability for "getting up" of the humanoid robot.

Conclusions

- Starting from scratch, our system bootstraps behavioral self-creation of widely arbitrary robotic systems in unknown, unstructured, and highly dynamic environments.
- A first step in the self-creation of artificial life by self-organization.
- Useful:
 - Developmental robotics → Playful exploration of the bodily affordances of very high-dimensional robotic systems of complicated, widely unknown physics.
 - Self-organization creates a reservoir of potentially useful behaviors in unforeseen situations (self-rescue)
- Further work: Open ended development in a completely autonomous robotic world.

Acknowledgements

- In cooperation with Georg Martius², Michael Herrmann^{2,3}, Frank Hesse², Naglaa Hamed¹, Frank Güttler¹, Marcel Kretschmann¹ et al.
 - ²Bernstein Center for Computational Neuroscience, Göttingen
 - ¹University Leipzig
 - ³University of Edinburgh
- Software, videos, and further information on http://robot.informatik.uni-leipzig.de