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Abstract— With the accelerated development of robot tech-
nologies, optimal control becomes one of the central themes
of research. In traditional approaches, the controller, by its
internal functionality, finds appropriate actions on the basis
of the history of sensor values, guided by the goals, intentions,
objectives, learning schemes, and so forth. While very successful
with classical robots, these methods run into severe difficulties
when applied to soft robots, a new field of robotics with
large interest for human-robot interaction. We claim that a
novel controller paradigm opens new perspective for this field.
This paper applies a recently developed neuro controller with
differential extrinsic synaptic plasticity to a muscle-tendon
driven arm-shoulder system from the Myorobotics toolkit. In
the experiments, we observe a vast variety of self-organized
behavior patterns: when left alone, the arm realizes pseudo-
random sequences of different poses. By applying physical
forces, the system can be entrained into definite motion patterns
like wiping a table. Most interestingly, after attaching an object,
the controller gets in a functional resonance with the object’s
internal dynamics, starting to shake spontaneously bottles half-
filled with water or sensitively driving an attached pendulum
into a circular mode. When attached to the crank of a wheel the
neural system independently develops to rotate it. In this way,
the robot discovers affordances of objects its body is interacting
with.

I. INTRODUCTION

The demand of creating robots that are capable of be-
coming part of our everyday lives and our society is rising.
However, the control of such highly complex autonomous
robots is a challenging task. Robots mimicking the hu-
man morphology, also called anthropomimetic robots, are a
prominent example of this challenge. To model an essential
mechanical aspects of the human musculoskeletal system
these robots are driven by artificial muscles and tendons. This
makes them lighter and softer than classical systems and thus
saver to interact with. These properties make them favorable
for service robots in human environments. Moreover, because
of their human-like morphology, they can be used for better
understanding human behavior generation and development.
Since muscles are the active part in the body, they are
also the most complex part to model. To date, in humanoid
anthropomimetic robots, these muscles are either pneumatic
or consisting of a motor coiling a tendon, often in series
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with an elastic element. This simple construction exhibits
many of the properties of biological muscles: they can
only pull, the transmitted force is depending on the current
joint angle through a changing lever arm, the tendons wrap
around bones, can be multiarticular and the system is often
under-constrained and as such, there are many solutions to
every desired joint position. This approach also introduces
a number of non-biological constraints, such as hysteresis
through friction in the tendon routing, tendon elasticity and
bandwidth limitations from the motors. Lastly, certain fea-
tures of biological musculoskeletal systems are omitted. Most
notably, these are ligaments, elongated muscles attachments
and effects from muscle bulging.

World wide, several of such muscle tendon driven systems
have already been built. While mechatronically at an ad-
vanced level, the control of such systems is still in its infancy.
In principle, any of the known control paradigms can be used
for the behavior generation. To date, the two branches of
robotics—the classical AI versus the embodied approach—
coexist, each one having its realm of relevance. Combining
them using learning approaches becomes more and more
successful. On the classical side, the DARPA challenge
presents numerous examples of progress but reveal also a
realm of failures of these systems even under remote control.
The embodied approach seems to be favored in systems with
strong physical effects, like soft robotic systems, where the
engineering approaches run into severe difficulties. Some-
where in between are a variety of new control paradigms,
best demonstrated by the amazing locomotion abilities of the
Boston dynamics robots, like BigDog, Petman and others.
These are ingeniously engineered systems for realizing a
specific set of tasks with their highly specialized bodies.

The limitations of present day engineering approaches
to human like structures is best seen when considering
muscle-tendon driven (MTD) systems where an important
line of research was shaped by EU projects leading from
CRONOS, to ECCEROBOT to MYOROBOTICS, but also by
Japanese projects creating the highly sophisticated Kenshiro
robot [1]. While excellent work has been done in planning,
constructing, and eventually building these robots [2], the
control of these systems [3], [4], [5], [1] is restricted so far
to primitive behavior patterns.

We argue that better results could be achieved along the
lines of embodied AI [6], [7] or morphological computa-
tion [8], [9], [10]—an active field of research with many
impressive results, opening new perspectives for both robot
control and our understanding of human sensorimotor intelli-
gence [11]. This paper presents an approach that includes the
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systematically in the control process than current embodied
approaches. By inverting the roles of the controller and
the controlled, the world becomes not only “its own best
model” (Rodney Brook’s idea) but leverages it to “its own
best controller” in a metaphorical meaning without aiming
at actual optimality. This paper will both develop this idea
and outline some of the most intriguing consequences. We
attempt to root the idea that “the body shapes the way we
think” [6] deeper and more systematically in the physical
world, making the latter the actual creator of the robot’s way
of acting and potentially thinking.

The core of the proposed control algorithm, introduced in
Sect. II is a very simple sensorimotor mapping that adapts
rapidly according to a modified differential Hebbian-type
learning rule [12]. Specific behavior self-organizes in the
interaction of the robot, its environment and the dynamics
of the controller. This happens without prior knowledge of
the system under control. We report on the application of our
control framework to a tendon-driven arm-shoulder system
in Sect. III. In Sect. IV we show how the robot may discover
dynamical affordances of the world by physically interacting
with objects which are presented and analyzed here for the
first time.

II. CONTROL STRUCTURE AND SYNAPTIC PLASTICITY

The control framework is generic and does not use specific
knowledge about the system under control. It was previously
demonstrated in simulated robots that this control scheme
leads to coordinated and purposeful behaviors [12]. In this
paper, we consider a tendon driven robotic arm with 9
actuators: 6 in the shoulder, 2 in the elbow and one effecting
both. These robots are driven by artificial muscles simulated
by tendon-strings that are wind up on a motor spindle and
are suspended by springs, see Fig. 2(b). Each muscle i is
controlled by a target length yi of the tendon and provides
a sensor value xi comprised of the actual tendon length li
combined with the spring compression fi,

xi = li + βfi (1)

where β regulates the integration of the spring compres-
sion/force. We use β = 1 throughout the experiments. The
spring force f will be in the interval [−α, 1 − α] where α
is the initial pretension (here α = 0.1). First there is an
initialization procedure where the arm is manually put in a
central pose and force control is used to make fi = 0,∀i
to create the pretention on the tendons. In this situation the
lengths li = 0 are set to zero. In general l is normalized to the
interval [−1, 1], where values correspond to shorter tendon
length. Afterwards the plant is set into position control for
the tendon length as mentioned above.

A. Controller network and synaptic dynamics

The theme of our work is structural simplicity, relying
upon the paradigm that complex behavior may emerge from
the interaction of a simple neural circuitry with the complex
external world. Specifically, the controller is a network

of rate-coded neurons transforming sensor values x =
(x1, x2, . . . , xn) into motor commands y = (y1, y2, . . . , ym)
(target tendon lengths). In the application, a one-layer feed-
forward network is used, described as

yi = tanh

 n∑
j=1

Cijxj + hi

 (2)

for neuron i, where Cij is the synaptic connection strength
to input j and hi is the bias term, which is set to zero in
this work (hi = 0). The motor commands are thus confined
to the interval +1 and -1. The setup is displayed in Fig. 1.

Let us assume the robot has a basic understanding of
the causal relations between actions and sensor values. In
our approach, this is realized by an inverse model which
approximately relates the current sensor values x′ back to
its causes, the preceding motor commands y. The model will
reconstruct (the efference copy) ỹ with a certain mismatch
δy. Formulated in terms of the rates of change, we write

˜̇y = F (ẋ′) (3)

with F representing the inverse model function. We use a
linear model as

˜̇y = Mẋ′ (4)

where M is a unit matrix where m = n in the spe-
cial case of Myorobotics arm. We also use a delay-
embedding setting of the sensor values resulting in x(t) =
(x1(t), x2(t), . . . , xm(t), x1(t−d), x2(t−d), . . . , xm(t−d))
where d is the time delay and n = 2m. In this case we use

Mij =


1 for i = j

−1 for i = m+ j

0 otherwise,
(5)

which is a unit matrix for the direct sensor to motor mapping
and an negative unit matrix for the delay sensor to motor
mapping. This setup is most adequate for oscillations with
a period of 2d. As a helpful modification of the original
approach [12], we introduce a normalization factor into the
update rule by defining

ˆ̇x =
1

‖ẋ‖2 + r
ẋ (6)

(note that ˆ̇x is not a unit vector) where ‖ẋ‖2 =
∑

i ẋ
2
i and

r is a regularization term which may range from 0.1 to a
minimal value determined by the discretization of the sensor
values. However, in practice, a too small r leads to an overly
strong influence of very small velocities in case of inactivity.

In these terms, the modified differential extrinsic plasticity
(DEP) rule is formulated as

τ∆Cij = ˜̇yi ˆ̇xj − Cij (7)

where τ is the time scale for this synaptic dynamics and
−Cij is a damping term. Because of the normalization
introduced below, we do not need an additional scaling
factor for the decay time. In the experiments, τ is of the
order of 1 second. Equation (7) reveals the similarity to
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Fig. 1. Neural controller network connected to the Myorobotic arm. The inset on the right illustrates the synaptic plasticity rule, called differential
extrinsic plasticity (DEP) [12]. It is driven by a modified differential Hebbian law, multiplying the time derivatives of the incoming sensor values ẋ with
the virtual motor values ˜̇y, which are generated by the inverse model Eq. (4) from the next input’s derivative ẋ′. In the case of the arm the inverse model
is essentially a one-to-one mapping of sensor to motor values.

differential Hebbian learning, which has the terms ẏiẋj .
Recently, differential Hebbian learning was demonstrated to
lead to learning of certain reflexes from spontaneous motor
activity in muscle driven devices [13].

As in [12], we introduce an appropriate normalization of
the synaptic weights C and an empirical gain factor κ ∼ 1. In
practice, we use an individual normalization of the synaptic
vector of each neuron, i. e. replace Eq. (2) with

yi = tanh

 n∑
j=1

κγiCijxj + hi

 (8)

where γi = 1√∑
j C2

ij

. The empirical factor κ regulates the

overall feedback strength in the sensorimotor loop. If chosen
in the right range external perturbations contained in ˜̇y get
amplified to initiate and maintain an active behavior.

Note, that a behavior can become stationary if it repro-
duces the controller matrix C with the sliding average over
˜̇y ˆ̇x>, such that ∆C in Eq. (7) is zero on average. This is the
case for harmonic oscillations, see also [14].

This controller network may appear utterly oversimplified.
Commonly, and in particular in classical robot control, a
certain behavior is seen as the execution of a plan devised
by the brain. This would require a highly organized internal
brain dynamics, which could never be realized by the simple
one-layer network. However, in this paradigm, the essential
new feature is the irreducible unity of the controller and the
controlled.

When embedding our controller, see Fig. 1, into the
sensorimotor loop, a meta-system—consisting of the me-
chanical system, the controller with its sensor driven synaptic
dynamics, and the energy supply —is created displaying
a rich behavioral spectrum like limit cycle attractors, long
lived transients, and fixed point flows generating pseudo-
random sequences of poses and a high responsiveness to
the dynamics of the outside world. This has been observed
already in [12] and will be corroborated by the experiments
reported below.

(a) (b)

(c)

Fig. 2. Myorobotic arm (a) with 9 muscles and a ball shoulder joint, a
single muscle element (b), and a dislocated shoulder (c). The dislocation
happens immediately as soon as the tendons are getting slack.

III. UNFOLDING BEHAVIORS

The above defined controller was used in the experiments
with a tendon driven arm-shoulder system from the My-
orobotics toolkit, see Fig. 2.

A. Peculiarities of muscle-tendon driven systems

There are a number of features which make the muscle-
tendon driven (MTD) systems different from classical robots
having revolute joints with direct motor control, i. e. the
motor positions directly translate into joint angles and into
poses. The most obvious effects stem from the properties of
the tendons themselves: they can get slack, wrap or even
tangled. These effects make it hard to predict the joint
positions from the geometry and the motor positions. To
reduce the difficulty and allow for a defined force trans-
mission a permanent tension on the tendons has to be kept,
which in turn poses another problem: The tension can only
be achieved by tightening each tendon up against all the
others, each individual tension being reported by the spring
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combinations of tension forces for a single arm pose and (ii)
that the action of a single motor will be reflected in a change
of spring compression of all other muscles. In other words,
actuating a single muscle is reflected by a pattern of sensory
stimulation—a whole-body answer.

Furthermore, the combination of friction and muscle-pose
ambiguity leads to a hysteresis effect. After driving the arm
by a sequence of motor commands from the current pose to
new pose and then back by reversing the motor commands
one ends up in a different pose and muscle configuration
than the starting one. In general, this makes the translation
of a kinematic trajectory for the arm into motor programs
extremely difficult, even more so if there are loads and high
velocities involved. Also, the classical approach of learning a
model by motor babbling becomes illusory. These problems
are partially circumvented when using the whole system
dynamics itself for finding the control signals as seen below.

B. Self-regulation

Let us now have a look at the main characteristics of
the control approach, which is also discussed in [14]. This
paper goes into more detail and present new experiments, see
Tab. I for an overview and videos. At first, we observed the
self-regulation into a working regime where the tendons are
kept under tension even in very rapid motions with notable
loads. This is very important as it guarantees the signals
from the controller to be executed in a definite way. As a
result, in all experiments we never had to face a shoulder
dislocation, see Fig. 2(c), which may happen promptly if
tendons are becoming slack. This is even more astonishing
as this sensible working regime emerges from the controller
without any additional tuning or calibrating the system. For
that, the integration of the forces into the sensor values
Eq. (1) is important. We did not study it systematically
yet and expect other configurations to work as well. In
the experiments we used the following parameter settings:
κ = 0.5, τ = 1 s, d = 0.5 s, a time distance between x and
x′ of 0.08 s, r = 10−3 and a update frequency of the control
loop of 100 Hz.

C. Manipulability

The dominance of the world in generating the controller
signal, see Eq. (4), makes the controlled system manipulable
by external forces. The point is that any externally applied
forces change the sensor values via the changing spring
compression, see Eq. (1) and thus changes both factors of
the update equation Eq. (7). This effect integrates manipu-
lative influences—like a physical human-robot interaction—
into the sensor values and thereby, via C, in the behavior
generation.

For instance, the arm can always be stopped by applying a
force by hand. The reason is not at all that the motors are too
weak. Instead, ẋ = 0 is a fixed point of the dynamics of the
meta-system to which it relaxes if the mechanical degrees of
freedom are frozen manually. Moreover, the system can be
entrained by manual interaction into specific behaviors. We

x1 x5

(a)

10 20 30 40 time [s]

-0.6
-0.4
-0.2

0.2
0.4
0.6
0.8
sensor

f1 f5

(b)

10 20 30 40 time [s]-0.1

0.1
0.2
0.3
0.4
0.5
0.6

force

y1 y5

(c)
10 20 30 40 time [s]

-0.5

0.5

output

Fig. 3. Handshake experiment. (a) sensor values x, (b) forces f , and
(c) motor values y for channels 1 and 5. Events: 6 s: operator is grasping
the arm and starts the handshake; 21 s: freezing of parameters and release;
31 s: bringing arm into resting position, it stays there from 35.5 to 37 s
where it got perturbed. See also corresponding Video 2.

demonstrate this in the handshake experiment, see Video 2,
where the user is trying to move the arm in a periodic pattern.
Besides the possibility to train a robot in this way, the most
interesting point is the subjective feeling that comes about
when interacting with the robot. In the beginning of such
an interplay, the robot seems to have a will of its own as it
resists the motions the user is trying to impose. But after a
short time the robot more and more is following the human.
Eventually, by freezing the controller weights the robot can
uphold the imposed motion, see Fig. 3. If the parameters are
not frozen the “negotiated” joint motion pattern is possibly
left if the human quits the loop. In fact, in the experiments,
we observed by letting different people interact with the
robot that a “compliant” user is intrigued to follow the system
as much as its own intentions, ending up in an orchestrated
human-machine dynamical pattern.

D. Emerging modes

The meta-system is particularly akin to periodic motions,
i. e. there is a plenitude of latent limit cycle attractors which,
metaphorically speaking, wait for their excitation. This can
be seen for instance when suspending a weight (the bottle)
from the tip of the arm. Video 3 demonstrates how latent
velocity correlations are being amplified to end up in stable
circular motion patterns of the weight. The experiment starts
in a situation where the motor activities have settled to rest,
interrupted by occasional bursts so that the bottle is excited
to some minor pendulum motion. These oscillations directly
exert physical forces on the arm which propagate via the
springs into the sensor values, see Eq. (1), and eventually
into the C matrix which governs the behavior. To illustrate
this effect, Fig. 4 displays the forces measured by the sensors

http://playfulmachines.com/MyoArm-2/#vid:handshake
http://playfulmachines.com/MyoArm-2/#vid:handshake
http://playfulmachines.com/MyoArm-2/#vid:bottle:swing
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VIDEOS FOR THE INDIVIDUAL EXPERIMENTS AVAILABLE AT playfulmachines.com/MyoArm-2.

Title Description Sect. Vid./Link
Overview Compiled clip of all experiments Video 1
Handshake Human robot interaction by manually imposing a periodic movement III-C Video 2
Bottle swing Excitation of a circular pendulum mode III-D Video 3
Bottle swing measure Motors are stopped. Recording spring forces of swinging suspended bottle III-D Video 4
Shaking vertically half filled bottle at tip of the arm: shaking mainly along bottle’s axis III-D Video 5
Shaking horizontally Same as above but with horizontal attachment III-D Video 6
Rotating wheel Arm attached to a revolvable bar/wheel IV-.0.a Video 7
Rotating wheel II Parallel wheel – arm arrangement IV-.0.a Video 8
Rotating wheel III Different rotation frequencies IV-.0.a Video 9
Wiping table Arm with brush starts to wipe a table IV-.0.b Video 10
Wiping table modes Different wiping patterns from reloaded controllers IV-.0.b Video 11
Free No external forces applied: pseudo-random sequences of reaching-type behavior Video 12

0 10 20 30 time [s]

0.0

0.2

0.4

0.6

fo
rc

es

f2

f3

f4

f9

Fig. 4. Force measurements with swinging bottle but without active arm
movements for muscles 2, 3, 4 and 9 (for clarity). Dotted lines indicate
when the bottle was manually set into motion and at dashed lines it was
stopped, see Video 4.

when the bottle swings but the motors are stopped. Also
relatively small movements of the swinging bottle can be
detected. In the dynamics, now with enabled motors, this
may lead to self-amplification of latent pendulum modes as
observed in the experiments. These findings elucidate how
the pendulum as a physical subsystem is guiding—by its
internal dynamics—the meta-system into a resonant state,
i. e. a whole-system mode with defined frequency. When
analyzing the phase relation between measured force and
driving signal (motor commands), see Fig. 5, it becomes
evident that initially the bottle and arm are not in a fixed
phase relation and only become coherent once the swinging
mode is excited from 30 s on.

An indicator for the oscillations is found in the complex
eigenvalues of the linearized system dynamics as displayed
in Fig. 6. During the swinging mode, we find only 1 pair of
significantly non-zero complex eigenvalues representing the
main oscillatory component.

In a series of experiments we attached a bottle half-filled
with water to the tip of the arm in either horizontal or vertical
orientation. Both Video 5 and Video 6 show the emergence
of stable shaking modes. Again, we see how the meta-
system may become resonant with the internal dynamics of
a subsystem, if the latter provides correlations over space
and time. This is the case for instance when the water is
hitting either the walls or top and bottom of the bottle.
These impacts cause a reaction of the springs and hence
of the sensor values, which may increase correlations in the

0 10 20 30 40 50 60 time[s]
-0.5

0.

0.5

1.

1.5

-0.2

-0.1

0.

0.1

0.2

δ

f3 -y3 δ: f3→-y3

Fig. 5. Bottle swing: Phase-relation between force sensors and control
signal of muscle 3. The measured force f and the control signal y follow
a similar trajectory with inverted sign (note −y). The phase difference δ
(right axis in [s]) between force and motor value. At second 66 the string
of the bottle was shortened, see Video 3.

synaptic dynamics resulting in enhanced motions of the arm
in coherence with these signals.

IV. DISCOVERING OBJECT AFFORDANCES AND TOOL USE

The most interesting results are obtained if the robot is
interacting with objects having a certain functionality of their
own. We claim that by this interaction and the emerging
self-amplification effects, the robot may discover dynamical
affordances of the world.

a) Rotating a wheel: One striking example is the robot
arm connected to a wheel. In terms of Gibson’s [15] theory
of affordances a wheel affords rotating, in the same sense
as a chair affords sitting or a knob affords turning. With our
controller, the robot “discovers” such affordances without
any knowledge of the physics of the system and/or specific
motivation for doing just that task. It only has a bias towards
rotational movements, as these are possible fixed points of
the parameter dynamics. Earlier [12] it was demonstrated that
DEP leads to spontaneous coordinated rotation of wheels
by a humanoid robot in simulation. Here, the end of the
robotic arm is attached to a crank of a wheel, implemented
as a revolvable bar with weights for giving it some moment

http://playfulmachines.com/MyoArm-2/
http://playfulmachines.com/MyoArm-2/#vid:demo
http://playfulmachines.com/MyoArm-2/#vid:handshake
http://playfulmachines.com/MyoArm-2/#vid:bottle:swing
http://playfulmachines.com/MyoArm-2/#vid:bottle:force:measurement
http://playfulmachines.com/MyoArm-2/#vid:bottle:shaking:vertical
http://playfulmachines.com/MyoArm-2/#vid:bottle:shaking:horizontal
http://playfulmachines.com/MyoArm-2/#vid:wheel:frontal
http://playfulmachines.com/MyoArm-2/#vid:wheel:parallel
http://playfulmachines.com/MyoArm-2/#vid:wheel:parallel:freq
http://playfulmachines.com/MyoArm-2/#vid:wipe:dirt
http://playfulmachines.com/MyoArm-2/#vid:wipe:reload
http://playfulmachines.com/MyoArm-2/#vid:free:moving
http://playfulmachines.com/MyoArm-2/#vid:bottle:force:measurement
http://playfulmachines.com/MyoArm-2/#vid:bottle:shaking:vertical
http://playfulmachines.com/MyoArm-2/#vid:bottle:shaking:horizontal
http://playfulmachines.com/MyoArm-2/#vid:bottle:swing
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Fig. 6. Self-excitation of an oscillatory mode. Displayed are the absolute
imaginary parts of the eigenvalues of the linearized system dynamics
(Jacobian L = CM−1) (averaged over 1 s) and cumulatively plotted
(1, 1 + 2, 1 + 2 + 3, ...). During the pronounced oscillation between 35
and 68 sec there is one pair of dominant complex eigenvalues.

of inertia. In Video 7, initially the connection between
the arm and the wheel was rather loose so that for small
movements there is not reaction from the rotation of the
wheel. After improving this connection, an initial push by the
experimenter was sufficient to excite a rotation mode, that
persists over time and is stable under mild perturbations. It
is as if the controller “understood” how to rotate the wheel,
although it is just the result of force exchange and dynamics
of the meta-system. When positioning the wheel in parallel
to the arm, the modes were emerging even more readily as
seen in Video 8. Moreover, the system can immediately be
switched between forward and backward rotation mode. This
is possible because the time-scale of the synaptic plasticity
is so fast (in the order of one second) that the new dynamics
is quickly propagating into the controller via the plasticity
rule. However, during these rotational modes the internal
dynamics (Eq. (7)) is approximately at a fixed point. By
changing the time-delay d of the delay-sensors (see above
Eq. (5)) the frequency of rotation can be adjusted, see Fig. 7
and Video 9. Also the amplitude gets decreased, which is
most likely due to limited motor speed. Note that the time-
delay prescribes a preferred frequency that, however, is not
necessarily followed. The controller can generate oscillations
by different means, either by coupling to the delay sensors
or by implementing a rotation matrix, as in Fig. 6, in which
case any frequency can be implemented. We have observed
both in the experiments.

b) Wiping: In another experimental situation, the robot
is equipped with a brush and forced by manual guidance
to wipe a table. The table height is about 5 cm above the
initialized resting position. Video 10 demonstrates how, by
the combination of the restricting table surface and the
manual force, the robot is driven into the two-dimensional
wiping mode. Later in this video the robot is forced into a
different behavior, which is analyzed in Fig. 8. To illustrate
the different wiping modes we plot the phase difference be-
tween some sensor channels. The phase values are obtained
using the Hilbert transformation of the time series for each
channel. Postprocessing is applied to avoid unnecessary 2π
phase jumps and to smoothen the signal for better visibility.
Actually already before manual interaction the meta-system

(a)
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Fig. 7. Rotating the wheel. The frequency of resulting rotation behavior
can be changed by changing the delay d of the delay-sensors (Sect. II-A).
(a) Sensor trajectory x6 (representative for other sensors). (b) Sensor delay
d and half oscillation period (in seconds), see Video 9. Dashed lines indicate
changes of d.
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Phase differences δ: x5→x4 x4→x2 x8→x5

Fig. 8. Learning to wipe a table with a brush. Shown are the phase
differences between a selection of sensor values (bottom) and the controller
matrices (top) at different points in time indicated by green dots. The thick
lines show the sliding median of 2 seconds windows for better visibility.
See corresponding Video 10 (0 seconds in the plot is at the first cut in the
video). From second 11 (dashed line) to 22 (dotted line) the arm was trained
to perform a different movement, which persists for a few seconds until the
system drifts away.

is in a transient behavior changing the phase relation during
the course of time. During interaction (second 11 onward)
the changes are initially stronger and get weaker later. After
release of the arm by the operator (second 22) the behavior
is maintained for a few seconds and then drifts away. The
corresponding controller matrices also show a significantly
different structure in the course of the experiment.

As seen above, even without interaction the transients
into a meta-stable behavior are very long such that different
wiping patterns occur. By simply storing the weights (C) of
the controller these patterns can be collected into a repertoire.
Video 11 shows the recall of and switching between such
wiping modes, see Fig. 9. For the transition into a different
mode the controller was changed abruptly, nevertheless a
smooth transition into the new behavior occurs, suggesting
that most static controllers have a large basin of attraction.

V. SUMMARY AND OUTLOOK

This paper discusses a novel approach to control of
embodied systems. We demonstrated that a simple neural
network with the DEP rule, when coupled to a muscle-tendon
driven system, can excite a large number of behavioral
competences in a self-organized way. In the experiments we
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Fig. 9. Recall of different wiping patterns. At vertical dashed lines, a
static controller was loaded. Phase differences between a selection of sensor
values (bottom) and the controller matrices (top) (times, see green dots).
See corresponding Video 11. Observe the transients between the behaviors,
which are sometimes long, e. g. 15 sec for controller 4.

actually witnessed the emergence of a new kind of robotics.
The novelty can be seen best from the point of view of
physics. With the controller in the loop, we have a meta-
system consisting of the mechatronic system with controller
and energy supply. The nature of that meta-system is ruled
by the value of the gain parameter κ. With κ above a critical
value, the meta-system was shown to be host to a large
variety of behavior patterns which can be excited. These
patterns can emerge spontaneously or can be elicited by
manual interaction. These patterns can be understood as if
the controller tries to identify and amplify the tiny responses
from the world outside itself.

In particular, if the robot’s body is extended by attach-
ing objects with an internal dynamics of their own, the
controller gets in a functional resonance with them. The
emerging shaking and pendulum modes were earlier reported
examples. This paper analyses them and is devoted to the
discovery of object affordances by the robot arm, with
the robot at the wheel as the generic example. Behavioral
primitives acquired in a self-organized way and exploiting
object affordances, i. e. the emergence of tool use, may
form pre-requisites for higher-level control, prediction and
planning. The bootstrapping of new behavioral modes is an
important step for creating truly autonomous systems and to
create creativity in cognitive systems. We hope to support
these ideas with our future investigations.

All these patterns emerge with great ease and in a nat-
ural and elegant way. From the point of view of practical
applications, the novelty of this approach can be seen from
the fact that existing controller paradigms would have great
difficulties to generate any of the observed behavior patterns.
Remember that the controller receives nothing else but the
sensor signals—the sum of tendon plus spring length, and
that it has no knowledge of the physics of the mechanical
system. It will be a challenging task for the future to
connect this approach with common control paradigms in
order to build complex, embodied functional architectures.
Inversely, interpreting this controller as a simple approach
to generate complex, force-sensitive interactions with the
environment, it could also augment the repertoire of classical

controllers. Additionally, it may shed light on how biological
musculoskeletal systems generate the complex trajectories
they use to interact with the environment with an unrivalled
flexibility.

As a perspective, the observed compliance of the system to
the world’s internal dynamics—as demonstrated for instance
by the wheel—shows the way to an important generalization:
equipping the robot with more sensors that might report the
spatial relation of the robot’s mechanical degrees of freedom
to the structure of the environment, we expect a similar
integration of those relations into the emerging behavioral
modes. By integrating a camera, this mechanism can even
lead to an active exploration of visuomotor coordination, but
this is the topic of further studies.

Finally, we expect our approach to be effective not only
in softly actuated machines, as it was done here, but also
in structurally soft robots because the exploitation of body
dynamics is even more important there.
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