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emergent social interactions in robots.
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Abstract— We present an approach that enables robots to
self-organize their sensorimotor behavior from scratch without
providing specific information about neither the robot nor its
environment. This is achieved by a simple neural control law
that increases the consistency between external sensor dynamics
and internal neural dynamics of the utterly simple controller. In
this way, the embodiment and the agent-environment coupling
are the only source of individual development. We show how an
anthropomorphic tendon driven arm-shoulder system develops
different behaviors depending on that coupling. For instance:
given a bottle half-filled with water, the arm starts to shake it,
driven by the physical response of the water. When attaching
a brush, the arm can be manipulated into wiping a table, and
when connected to a revolvable wheel it finds out how to rotate
it. Thus, the robot may be said to discover the affordances of
the world. When allowing two (simulated) humanoid robots to
interact physically, they engage into a joint behavior develop-
ment leading to, for instance, spontaneous cooperation. More
social effects are observed if the robots can visually perceive
each other. Although, as an observer, it is tempting to attribute
an apparent intentionality, there is nothing of the kind put
in. As a conclusion, we argue that emergent behavior may be
much less rooted in explicit intentions, internal motivations, or
specific reward systems than is commonly believed.

I. INTRODUCTION

The long term goal of epigenetic and developmental
robotic research is to create autonomous, self-motivated, and
intelligent animats [1]. At the core of such a development,
there must be some principle or generic drive that guides
the learning system towards this goal. Ideally the learning
system should fulfill some elemental requirements, such as
to be task agnostic, to be open to new environments, to
operate with raw sensory information, and to perform online
learning in a continual self-determined process. One of the
lessons learned from robot control is that the exploitation
of the particular agent-environment interaction is of great
importance, simplifying fulfillment of tasks considerably, for
instance by increasing robustness and energy efficiency with
reduced computational demands [2]. In this paper, we present
an approach that takes embodiment and agent-environment
coupling as the only source of accessible information; and
we are going to show how a self-determined development of
coordinated and complex behaviors can emerge from a single
neural control law without any of the commonly applied
concepts like specific drives, intrinsic motivation, curiosity,
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specific reward systems, or the selection pressure in evolution
to obtain a self-determined unfolding of behavior, however,
see Sect. II-D for a connection.

This paper continuous the line of our previous works on
self-organization (SO) of behavior which started with the
principle of homeokinesis [3], [4], [5] about two decades
ago. There, the controller adapts by gradient descending the
so called time-loop error which balances high predictability
and high sensitivity of the dynamical system formed by the
sensorimotor loop. This gave rise to the playful machine
scenario [5] where many simulated and real robots self-
organize their behavior through the interaction with their
environments in a playful and task-free way. In the search
for further principles that lead to the SO of behavior the
maximization of predictive information was proposed [6],
[7].

Our most recent research aims at finding self-consistency
principles to bring the embodiment even more into the
foreground, as realized by differential extrinsic plasticity [8],
[9] with its more technically oriented variant introduced
in [10]. Notably, while the controller got simpler in each step,
the range of applicability steadily increased, advancing from
rigid body systems in computer simulations to the complex
tendon-driven physical machines featuring also in this paper.

The paper is structured as follows: Section II gives a new
derivation of the previous result [8], [10] based on a new
self-consistency principle of behavior and internal dynamics.
This controller is applied to a number of systems, starting in
Sect. III with a muscle-tendon driven arm-shoulder system
which is known to be resistant to classical control paradigms.
Part of these behavior patterns have been shown already
in [10] but we reconsider them here in the light of the
self-consistency paradigm. In Sect. IV we apply the same
controller to simulated humanoids in order to demonstrate
the potential of emerging social interaction.

II. CONTROLLER DYNAMICS

Before going into details let us give a brief sketch of
the self-consistency idea. We consider underactuated systems
with substantial embodiment, where future sensor values
carry not only the footprints of earlier motor actions but also
of the accompanying physical dynamics. By these competing
physical effects, perfect control is an illusion if the system
cannot be fully observed. Realistically, all one can aim at
is reducing illusions to make the controller of an active,
embodied system as much as possible the author of the
behavior. For developing the self-consistency idea, think of a
robot or human in a typical periodic pattern like crawling or
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degrees of freedom, i. e. the mechanical ones (the bones), as
well as the muscles, tissues and so on, and the internal neural
dynamics. In particular, all sensor values recording the state
of the body and its relation to the environment will reflect
this periodicity.

Each individual state variable, although periodic, displays
a complicated time structure. However, when looking at
correlations across those variables and/or time, we find that
stable periodic behaviors are characterized by steady, time
invariant correlation patterns. Concretely, when considering
a robot, human, or animal in a stable walking pattern, most
state variables, like proprioceptive sensor values xi, are in a
fixed phase relation, mostly in phase or anti phase.

A. Correlation patterns in perceptual space

The related velocities1 ẋi are either of the same or of
different sign, respectively, or they may be roughly zero for
phase shifts of ±π/2. Correspondingly, the matrix elements
Vij = 〈ẋiẋj〉 where 〈. . .〉 is the time average over one period,
of the sensor correlation matrix V is a fixed structure for any
cyclic motion pattern. Correlations across time may reveal
further fixed points characterizing the more involved nature
of specific motion patterns. In particular, we are interested
in the correlations across a time lag θ = t′ − t

V ′ij = 〈ẋ′iẋj〉 (1)

where t′ > t is the earliest time at which the motor action
generated at time t leaves a “footprint” in later sensor values,
i. e. in x′ = x(t+ θ).

This is a central point of the paper: while in state space
a cyclic behavior is a dynamical pattern, specifically a limit
cycle, in correlation space it is a fixed point. So, our aim
is a controller that learns to drive an embodied system
toward fixed points in correlation space and stabilizes it
there. This concept may be of more general interest for
robotics as convergence toward a fixed point is more easily
realizable than toward a limit cycle. Ideally, as there are
many such fixed points—one for each cyclic behavior—the
learning procedure should be able of finding them when
starting in their respective basin of attraction. This paper
will develop such an approach in detail. Having said that,
the only remaining question is how the controller must be
adapted so that convergence toward a fixed V is achieved.

B. The controller

In the applications, we use a neurocontroller realized by
a one-layer feed-forward network with m neurons, neuron i
defining the nominal value of motor i as

yi = g

 n∑
j=1

Cijxj + hi

 (2)

1We denote the rate of change of a quantity a by ȧ, which is interpreted as
a velocity. Time derivatives are taken simply as time differences, i. e. ẋ(t) =
x(t+ 1)− x(t).

where Cij is the synaptic connection strength to input j and
hi is the bias term, which is set to zero in this work (hi = 0).
We use tanh-neurons, i. e. the activation function g(z) =
tanh(z) to get motor commands between +1 and -1. The
setup is displayed in Fig. 1.

The correlation matrix Eq. (1) can be converted into
an expression for the C matrix by firstly postulating the
existence of a mapping M that realizes the back projection
of the sensor values x′ at time t′ to their causes, the motor
values at time t. As we are interested in the velocities, we
postulate Mẋ′ ≈ ẏ. Taking the time derivative of Eq. (2)
we get the simple result2 ẏ ≈ Cẋ and thus Mẋ′ ≈ Cẋ.
Multiplying by ẋ> and using the averages as in Eq. (1) we
get3 C〈ẋẋ>〉 ≈M〈ẋ′ẋ>〉 and eventually4 C ∝M〈ẋ′ẋ>〉 at
any of the fixed points in correlation space.

Before proceeding, we state that there is no contradiction,
as one might think, between the simple structure of the
controller and the expectation that the latter is able of
generating a complex cyclic motion pattern with a fixed C
matrix. Formally, this is achieved if the mapping x → x′

has complex eigenvalues. Note that the correlation matrix in
Eq. (1) may well have such complex eigenvalues as it is not
symmetric. Common approaches, see [11], [12] are based
on a definite internal dynamics of the controller itself. So,
if the controller is detached from the robot, there is still the
internal dynamics going on. Quite different, when detaching
our controller from the sensor values, there is no dynamics
left. Everything is generated only by the interplay with the
body-environment coupling.

C. Self-consistent learning rule

By exploiting the embodiment, the minimalistic controller
with a fixed C matrix is indeed able of realizing a sta-
ble cyclic behavior. However, in general we do not know
anything about the specific C matrices supporting such a
behavior. The idea is to find a learning dynamics that drives
the C matrix toward such fixed points in correlation space.
Now consider the dynamics in C space

τ∆Cij =
∑
l

Milẋ
′
lẋj − Cij (3)

where τ sets the time scale and −Cij is a damping term.
After convergence, i. e. at a fixed point in correlation space,
Eq. (3) yields C = M〈ẋ′ẋ>〉 where 〈. . .〉 denotes now
the moving average with time scale τ . This is taken as the
desired result because (i) overall factors in the C matrix
do not matter, see below, and (ii) the approximations may
be ignored, making the learning rule as simple as possible.
As a final step, in order to get the system into activity, we
have to maintain a certain feedback strength in each motor
channel. For that, we introduce a normalization with a factor

2By ignoring the nonlinearity of the tanh which is justified for small
amplitudes of the motor signal y.

3In matrix notation, for any two column vectors a and b, a>b is the
scalar product and S = ab> is a matrix with elements Sij = aibj .

4We use that in the average over one cycle and in the subspace of the
state vectors, 〈ẋẋ>〉 is proportional to the unit matrix so that we can ignore
that contribution.
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Fig. 1. Neural controller network connected to the Myo-robotic arm. The inset on the right illustrates the synaptic plasticity rule, called differential
extrinsic plasticity (DEP) [8]. It consists of a modified differential Hebbian law, multiplying the time derivatives of the incoming sensor values ẋ with the
virtual motor values ˜̇y, which are generated by the inverse model from the next input’s derivative ẋ′. In the case of the arm the inverse model is essentially
a one-to-one mapping of sensor to motor values.

κ (meta-parameter) into the controller, replacing Eq. (2) with
yi = g

(∑n
j=1

κ
(|Ci|2+λ)Cijxj + hi

)
, where λ � 1 is a

regularization parameter, see [8] for details.
Remember that this result was obtained under the con-

sistency assumption that the controller upholds the system
in a periodic pattern with a fixed C matrix. However,
when letting the C dynamics run freely using Eq. (3), we
have a double dynamics: physical + parameter, which self-
consistently generates behavior, with preference to converge
toward limit cycles in physical space (where the parameter
dynamics stalls). With a convenient feedback factor κ, this
is what happens in the experiments. However, in practice,
convergence to a fixed matrix is seldom achieved in the strict
sense due to the approximations made and because a moving
average of a cyclic quantity is still oscillating as long as τ <
∞. Besides the limit cycle attractor scenario, synaptic and
physical dynamics can also engage into more complicated
interplay leading to fixed point flows in correlation space,
see Sect. III-D below.

D. Remarks

Before applying the controller to concrete systems, let us
discuss some details.

a) Differential extrinsic plasticity: The learning rule
of Eq. (3) has a similarity to differential Hebbian learning,
which uses Cij ∝ 〈ẏiẋj〉, a purely internal quantity. Our
rule is substantially different as the postsynaptic factor in
the learning rule is given by the backpropagated response of
the outside world, represented by Mẋ′. This may be called
differential extrinsic plasticity (DEP) as already defined
in earlier work [8]. Notably, the fact that the correlation
structure of a Hebbian-like law can be directly mapped to the
correlations in the outside world may shed new light on the
success of Hebbian-like learning rules, see [8] for details.

b) Body inspired control vs. morphological computa-
tion: The leading role of the body in the generation of
behavior is sometimes referred to as “morphological com-
putation” naming the ulterior motive to shift computational

load from the controler to the body. However, as argued by
Hoffmann & Müller in [13] this is rather a misleading label,
as the physical body is not computing in the classical sense.
Of course, one may call the physical dynamics computation
but if this is computation, what is not. Instead, the central
question is to what extent the body contributes to the overall
“orchestration” of intelligent behavior. A potential measure
of that contribution could be given by the complexity gap
between the controller and the emerging dynamics, provided
that a convenient defined complexity measure. Intuitively,
we argue that this gap is quite large in the examples of
this paper, given that the minimalistic controller generates
motion patterns of notable complexity in high dimensional
systems. Here, the role of the body is not to just facilitate
an orchestration which is essentially controlled by the brain.
With our controller, the brain is nothing without the body. In
this sense, our approach is more radical in the realization of
said orchestration and can be considered as a kind of “radical
embodied robotics”, see also the remark on radical embodied
cognitive science below.

c) Intrinsic mechanism vs. intrinsic motivation: The
update rule Eq. (3) can also be obtained from the objective
function ‖δ‖2 with δ = ˜̇y − ẏ, where ˜̇y = Mẋ′, which
quantifies the illusion that the controller is the sole author of
the future development. Gradient descending this measure
is achieved5 by just the synaptic dynamics Eq. (3). One
may feel free to call this an intrinsic motivation to maintain
activity in the sensorimotor loop and to increase velocity
correlations between sensor values. Different from common
measures like those based on information theory [6], [7]
which are given by a single number, this objective function
has a dynamical structure as it is a direct function of the cur-
rent state of the system. Consequently, there is no sampling
or long integration of information required. In this sense, if
at all, ‖δ‖ can be considered as a new, dynamical systems

5In matrix notation and ignoring non-linearities as above, − 1
2

∂
∂C
‖δ‖2 =

˜̇yẋ> − Cẋẋ> giving Eq. (3) stipulating that 〈ẋẋ>〉 ∝ I in the subspace
of the respective trajectories.
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Fig. 2. Myorobotic arm (a) with 9 muscles and a ball shoulder joint, a
single muscle element (b), and a dislocated shoulder (c). The dislocation
happens wickedly as soon as the tendons are getting slack.

based measure of intrinsic motivation, which complements
the developed typology of intrinsic motivations [14].

III. TENDON DRIVEN ARM-SHOULDER SYSTEM

Because of their high complexity and human like struc-
ture, anthropomimetic robots are a challenging example
for testing the self-organization of behavior using Eq. (3).
Different from classical robots, anthropomimetic robots are
built following the morphology of the human body. Such
robots are more soft than classical systems making them
saver to interact with and thus favorable for service robots
in human environments. Moreover, because of their human
like morphology, they can be used for better understanding
human behavior generation and development.

World wide, several of such muscle-tendon driven (MTD)
systems have already been built. While mechatronically at
an advanced level, the control of both MTD and soft robotic
systems in general is still in its infancy. A generic example
is given by pertinent EU projects ranging from CRONOS, to
ECCEROBOT to MYOROBOTICS. While excellent work
has been done in building these robots [15], their control
faces fundamental problems [16], [17] and remains restricted
so far to primitive behaviors like actuating just an elbow of
the MTD system through computed muscle forces, see for
instance [18].

In this paper we report on experiments with a tendon
driven arm-shoulder system from the Myo-robotics toolkit,
see Fig. 2. There are a number of features which make the
muscle-tendon driven systems different from classical robots
where motor positions directly translate into joint angles and
into poses. The most obvious effects stem from the properties
of the tendons themselves: they can get slack, wrap or even
tangled. Otherwise, different kinds of joints can be used, such
as the ball-socket joint, as in the shoulder, see Fig. 2(a),
allowing for large reachable space with a single compact

joint. However, the potential dislocation of the shoulder is
an additional complication. These effects make it hard to
predict the joint positions from the geometry and the motor
positions. To reduce the difficulty and allow for a defined
force transmission a permanent tension on the tendons has
to be kept, which in turn poses another problem: The tension
can only be achieved by tightening each tendon up against
all the others, each individual tension being reported by
the spring length. This means that (i) there are infinitely
many combinations of tension forces for a single arm pose
and (ii) the action of a single motor will be reflected in a
change of spring length of all other muscles. In other words,
actuating a single muscle is reflected by a pattern of sensory
stimulation—a whole-body answer.

Furthermore, the combination of friction and muscle-pose
ambiguity leads to hysteresis effects. In general, this makes
the translation of a kinematic trajectory for the arm into
motor programs extremely difficult, even more so if there
are loads and high velocities involved. Although structurally
extremely simple, the new controller copes effectively with
these problems because it generates motor signals as a whole
system answer. In particular, in all our experiments we never
had a shoulder dislocation, see Fig. 2(c).

The robotic system is equipped with motor encoders
measuring the length of the tendons and with force sensors
measuring the spring displacement due to tendon tension.
Each muscle i is controlled by a target length of the tendon yi
and provides a sensor value xi comprised of the actual tendon
length li combined with the spring length fi as xi = li + fi.
The spring length fi is normalized to be in the interval
[−0.1, 0.9] where 0.1 is the initial pretension (at fi = 0).
The length is normalized to be in the interval [−1, 1] and
li = 0 in a manually set central pose. The controller is also
supplied with delayed copies of the sensor values, i. e. the
new sensor vector is (x>(t), x>(t − d))> with delay time
d > 0.

A. Behavior as resonance

All experiments with the arm are performed with the same
controller introduced in Sect. II with the following parameter
settings: κ = 0.5, τ = 1 s, d = 0.5 s, θ = 0.08 s, λ = 10−4,
and a update frequency of the control loop of 100 Hz. The
choice of the parameters are not critical, but influence the
resulting behavior: κ changes the amplitude and needs to
be large enough to create spontaneous behavior; τ regulates
the search for a self-consistent behavior where low values
corresponds to fast changes and may also be used to kick the
system out of a stable behavior; d sets a preferred frequency,
which, however, is not necessarily followed because any
frequency can be achieved by a suitable coupling given at
least 2 dimensions.

Depending on the initial pose and the physical embed-
ding different behaviors develop. In order to follow the
argumentation we recommend to watch the referred video
clips summarized in Tab. I. By way of example, consider
Video 2 where a pendulum was attached to the arm, as
displayed in Fig. 3(a). In the beginning, minimal motor
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VIDEOS FOR THE INDIVIDUAL EXPERIMENTS AVAILABLE AT playfulmachines.com/ICDL2016.

Title Description Sect. Vid./Link
Overview 2–9 Compiled clip of all arm-shoulder experiments Video 1
Bottle swing Excitation of a circular pendulum mode III-A Video 2
Shaking vertically A half filled bottle is vertically attached to the tip of the arm: shaking of the

bottle mainly along its axis
III-A Video 3

Shaking horizontally Same as above but with horizontal attachment III-A Video 4
Rotating wheel Arm attached to a revolvable bar/wheel III-B Video 5
Rotating wheel II Parallel wheel-arm arrangement III-B Video 6
Rotating wheel III Different rotation frequencies III-B Video 7
Wiping table Arm with brush starts to wipe a table III-C Video 8
Wiping table modes Different wiping patterns from reloaded controllers III-C Video 9
Free No external forces applied: pseudo-random sequences of reaching-type behavior III-D Video 10
Crawling humanoid Humanoid robot on the ground develops a crawling behavior from scratch IV Video 11
Humanoids at a wheel Two humanoid robots hold on to the cranks of a wheel and jointly rotate it IV Video 12
Socializing I Harmony in emerging behavior of two humanoids suspended on elastic ropes IV-A Video 13
Socializing II Emerging patters with inverted vision IV-A Video 14
Socializing III On stools, one robot is weakened and gets perturbed repeatedly IV-A Video 15
Socializing IV Same as above, but with delayed vision IV-A Video 16
Alien body effects Two humanoids percieve only sensors of other robot (inversed sign) IV-B Video 17
Fighters Two humanoids fighting IV-C Video 18

(a) (b) (c)

Fig. 3. Some of the experimental setups with the arm-shoulder
system. Self-excited pendulum mode (a) (Video 2), vertical shaking setup
(b) (Video 3), and frontal rotating bar/wheel setup (c) (Video 5).

activities are seen to spontaneously excite minor pendulum
motions. These movements directly exert physical forces on
the arm which propagate via the springs into the sensor
values and eventually into the synaptic dynamics which
governs the behavior. This may lead to the amplification of
latent pendulum modes until self-consistency, i. e. a stable
circular movement of the pendulum, is achieved. These
findings elucidate how a physical subsystem, the pendulum,
may pilot—by its internal dynamics—the meta-system into
a resonant state, i. e. a whole-system mode with defined
frequency.

In order to understand why the system is behaving this
way, let us take the different steps apart. Initially, the synaptic
connections Cij are all 0 so that the motor output is also
0 which corresponds to the initialization length of each
tendon. Any initial movement or forces applied to the arm
(e. g. gravity) cause an non-zero value for the spring forces
and thus in the measured upcoming sensor readings x′.
These give rise to non-zero contributions ẋ′ẋ in Eq. (3).
As a remark, this is the decisive difference to differential
or other Hebbian learning rules which correlate input and
output (y) directly, where the output would remain 0 for all

times. The product of ẋ′ẋ defines the first non-zero entries
in the connection matrix C which in turn influences the
forthcoming actions y. This explains how the system de-
parts from the unbiased initialization condition. The second
major effect is the drive for self-consistency between system
dynamics based on positional variables and the parameter
dynamics based in velocities, which can be satisfied in limit
cycles as explained in Sect. II. The particular limit cycle—
the fixed point in correlation space—depends decisively on
the responses of the system.

Thus, the emergent behaviors clearly depend on the phys-
ical subsystem. For instance, when attaching a bottle half-
filled with water, see Fig. 3(b), in either horizontal or vertical
orientation, case specific shaking modes arise, as demon-
strated by Video 3 and Video 4. In this case, strong signals
are circulating through the SM loop whenever the water hits
either the side walls or top/bottom of the bottle. These signals
may self-amplify and eventually generate motions of the arm
in coherence with the physical responses.

B. Affordances

By the self-excitation mechanism, the controller may
also discover (dynamical) affordances—in the sense of Gib-
son [19]—of the physical world, see also [20]. This is of
interest for developmental robotics, as the discovery of object
affordances may form pre-requisites for emerging tool use,
higher-level control, prediction, and planning.

We consider the robotic arm connected to a crank of a
revolvable wheel/bar, see Fig. 3(c). In terms of the theory of
affordances [19], we could say that a wheel affords rotating
in the same sense as a chair affords sitting or a knob affords
turning. With the new controller, the robot discovers such
affordances without any knowledge of the physics of the
system and/or any internal motivation for doing just that
task. In the experiments, the wheel is modeled by a bar with
weights for giving it the necessary moment of inertia. In

http://playfulmachines.com/ICDL2016/
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-DEP2_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-bottle-swing_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-bartender-vert_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-bartender-hor_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-wheel-frontal_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-wheel-parallel_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-wheel-parallel_freq_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-wiping-dirt_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-wiping-reload-long_small.mp4
http://playfulmachines.com/Videos/MyoRobotics/MyoArm-widemoves_small.mp4
http://playfulmachines.com/Videos/DEP/humanoid_floor_dhl_crawling_from_start-cut.mp4
http://playfulmachines.com/Videos/DEP/twotrainerstanding.mp4
http://playfulmachines.com/Videos/DEP/harmony_hq.mp4
http://playfulmachines.com/Videos/DEP/harmonyasynch_hq.mp4
http://playfulmachines.com/Videos/DEP/twostoolsoneweak1_hq.mp4
http://playfulmachines.com/Videos/DEP/dirtydancing2_hq.mp4
http://playfulmachines.com/Videos/DEP/alieninverse_hq.mp4
http://playfulmachines.com/Videos/Humanoid/humanfigterpush1_hq.mp4
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wheel was rather loose so that for small movements there is
no reaction from the rotation of the wheel. After improving
this connection, an initial push by the experimenter was
sufficient for exciting a stable rotation mode. It is as if the
controller “understood” how to rotate the wheel, although it
is just a result of force exchange and dynamics of the meta-
system.

When positioning the wheel in parallel to the arm, the
modes were emerging even more readily as seen in Video 6.
Moreover, the system can be switched between forward and
backward rotation by manual interaction and the frequency of
the modes can be manipulated by changing a time-constant
of the controller, see Video 7. The spontaneous emergence
of the rotation behavior can be argued to be a cognitive act,
if we consider—in the sense of (radical) embodied cognitive
science [21]—that cognition is to be described in terms of
agent-environment dynamics and not in terms of computation
and representation.

C. Manual training

In another experimental situation, the robot is equipped
with a brush and forced by manual guidance to wipe a
table. Video 8 demonstrates how, by the combination of
the limiting table plane and the manual force, the robot is
driven into a two-dimensional wiping mode. This is due
to both the tight closed loop control and the compliance
of the synaptic dynamics to external perturbations, see [8].
Most importantly, emerging motion patterns can be identified
and stored away by the user simply by taking snapshots
of the synaptic weights (C). Video 9 shows the recall of
previously acquired wiping modes. The transition between
different modes is achieved by switching between those snap-
shots. Nevertheless, smooth transients are observed which is
encouraging for building behavioral architectures from these
self-organized behavioral primitives.

D. Behavior as fixed point flow

As mentioned above, behaviors under the controller Eq. (3)
are not restricted to limit cycle attractors. As an alternative,
we observe also seemingly random sequences of poses which
are of interest for building libraries of reaching behaviors.
An example is given in Video 10 where the bottle contains
only little water so that its responses as a subsystem are too
weak to pilot the rest of the system into resonance behavior.
Instead of a fixed correlation structure in C, we have now,
more or less, a flow of fixed points, but we need further
theoretical back up here. In the experiments, this corresponds
to a sequence of reaching patterns which might be of interest
for such a library.

IV. SOCIALIZING PHENOMENA

Individual development by social interaction is a chal-
lenging subject for developmental robotics. In the following
we provide a few examples of socializing effects between
two robots based on both physical interactions and exchange
of visual information. The sensorimotor loop of each robot

(a) (b) (c)

Fig. 4. Interacting with the environment and another robot. The
humanoid robot crawling at the floor (a) (Video 11), two humanoid robots
at a wheel with cranks (b) (Video 12), and two humanoids suspended on
elastic robes, perceiving each others’ joint configuration (c) (Video 13–17).

contains the other robot to some extend, such that the
drive for self-consistency of our controller leads to coherent
behaviors involving both robots with mutual influences.

We study this in humanoid robots simulated in a 3D
physical simulator [22]. Before we start with the interaction
of robots let us have a look at a single of these robots
controlled by the new paradigm. When left on a flat ground
one of the many possibly behaviors that emerge is a crawling
behavior, as seen in Video 11 and Fig. 4(a) [8]. Attaching the
hands of two of these robots to the cranks of a revolvable
wheel, Fig. 4(b), opens a physical communication channel
allowing for the exchange of forces. The robots have to
negotiate a behavior that is compatible with the constrained
system and the motion of the partner. In Video 12 we
demonstrate an instance of such a joint behavior, which
appears typically within a minute of interaction time.

A. Including vision

Let us consider two robots in “visual” contact meaning
that each robot receives the joint anglesof its partner and
includes them into its sensor vector. Calling xown ∈ Rn and
xoth ∈ Rn the vector of sensor values of its own and of
the other robot, respectively, we have x =

(
xown, xoth

)
. Each

robot hypothesizes (correctly) that the other one is of the
same construction as itself. Consequently, the vector x′ ∈ Rn
in the learning signal x′ixj is replaced with the sum x′ own +
x′ oth. Note that due to normalization the increased scale does
not matter. In this setting, C is an n× 2n matrix, mapping
the 2n sensor values of the extended vector x onto the n
motor commands.

With this and only this information, the simulation is
started and one of the robots gets perturbed in order to
break the perfectly identical conditions. At first, the vision is
switched off (xoth = 0) so that we observe how each of the
robots explores its behavioral space in a seemingly random
manner (remember that the controller and the physics are
deterministic, though). After switching on vision, we observe
a rapid convergence (in seconds) toward a synchronized
motion by which they now explore their behavioral space in
unison, see Video 13. Interestingly, when flipping the signs
of the received sensor values (x = (xown,−xoth)), the robots
start imitating each others’ 3D mirror picture, see Video 14.
One can also blindfold one of the robots so that it develops
independent motion patterns (after a perturbation). After
some time the sighted robot learns to imitate the motions
of the blinded robots, which acts as a sender. However, if
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decays so that, after seconds, the two robots are developing
independently. The mutual influence is also seen when one of
the two robots is weakened by reducing the maximal muscle
strength. In Video 15 one of the robots is perturbed and/or
weakened temporarily. Nevertheless, the weak robot not only
is seen to put all its efforts in still following the strong one
(as might be expected), but the strong one is also mimicking
the weak one to some extend.

Further effects are observed if delaying the vision signals
between the robots (same delay in both directions). Interest-
ingly, we observe numerous metastable limit cycle attractors,
see Video 16, if the delay time td fulfills the requirement
td = T (k + 1)/2 with T the period and k = 0, 1 . . . .
Depending on whether k is odd or even, in-phase or anti-
phase motion patterns are observed.

B. The alien body effect

What happens if we cut or dampen the connections to the
robot’s own sensors, so that each robot essentially sees only
the joint angles of its mate? The perceived sensor signals
are now x = (0.1xown, xoth) and for the learning signal we
have x′ = (0.1x′ own + x′ oth). Each robot has to realize the
learning and control of its body mainly on the basis of its
mate’s movements, reported by the visual system. In a sense,
each robot is building its behavior on the illusion that the
body of the other one is its own. Although this is an illusion,
after a very short time the robots find a way to synchronize
and develop behavior similar to the harmony shown in
Video 13. This is why we call the emergence of coherent
behavior patterns in this setting the alien body effect. For
demonstrating the stability of the effect, in Video 17 we
inverted the sign of the vision channel, like in Video 14.
Even though we are making the system more complicated,
the two robots converge temporarily into a common motion
pattern, imitating each others’ 3D mirror picture.

When moving in synchrony, this alien body behavior is
no surprise as the sensor values xoth and xown would agree.
The point of interest is that these states of synchrony are
metastable attractors with a wide basin of attraction, i. e. the
robots develop a joint strategy for searching the behavior
space. Again, as it turns out, the search behavior becomes
more variate if there is a short delay in the visual system.

C. Apparent Intentions

By the observer, the emerging behaviors are often at-
tributed to some underlying concepts such as volition, moti-
vation, intentions, drives. For instance, when two humanoid
robots are put in an arena we may observe a fighting scene
as shown in Video 18. It can be described in the beginning as
if robot 1 is beating its opponent, i. e. robot 2, but later robot
2 is acting as-if in a revenge by trying to hit robot 1 at its
head, eventually succeeding. Nothing of those intentions is
put into the system nor detectable in the “brain” of either of
the two robots. Instead, the apparent intentions emerge from
the agent-environment coupling, here the interaction with the
respective opponent.

Speculatively, we may try to use this scenario as a testbed
for philosophical concepts. In the video scene, we may for
instance ask whether agent 2 is responsible for hitting agent
1 at its head. Hopefully, in this context we may contribute
to the ongoing [23] debate, starting with Benjamin Libets
famous experiments [24], [25] of who is responsible in taking
volitional decisions. This is not only of academic interest,
as interpretations of those results reach up to the statement
that humans cannot be made responsible for their doing as
the brain decides long before the conscious I takes over. Of
course, there is a vetoing possibility [23], but as the latter is
also produced by the brain, it seems questionable if vetoing
is the solution of the problem. Anyway, the somewhat
disillusioning experience by our experiments is that the irre-
versible conjunction of brain, body, and environment clearly
produces apparently conscious acts, like “discovering” how
to rotate the wheel, without any internal functional unit
for the conscious representation, internal motivation, reward
systems, and the like.

V. DISCUSSION

This paper aims at demonstrating how an extremely simple
neurocontroller with the synaptic dynamics Eq. (3) generates
highly non-trivial behavior. As the examples demonstrate,
the simple principle—making the controller enhance the
velocity correlations of the (proprioceptive) sensor values—
is a vital tool for the generation of behavior. Metaphorically
speaking, it makes the robot ”feel” the physical dynamics
of its body in interaction with the environment. Piloting the
arm movements by either the pendulum or by the dynamics
of the water in the attached bottle were exemplifying this
effect. Moreover, in a number of further experiments, we
demonstrated the “orchestration” of behavior in various
sensorimotor machines.

These effects do not necessarily come as surprise. Instead,
as discussed in earlier work [5], [9] they are a necessary
consequence of spontaneous symmetry breaking mechanisms
in the considered systems which reside—roughly speaking—
at the edge of chaos, given a convenient choice of the self-
amplification factor κ. This is what makes the approach
a little difficult to accept in terms of common robotics
scenarios. In those scenarios, it is usually possible to clearly
say what the controller exactly does to generate the behavior.
While this is not possible in our case, we are not lost as
(i) there are some rules like the convergence toward cyclic
behaviors (under certain physical conditions at least) and (ii)
we obtain full fledged behavior of some complexity which—
in the Myorobotics case at least—has not been achieved
before. In general, we claim that it would be extremely
difficult to generate the observed behaviors and effects by
the known methods of developmental robotics, in particular
considering the rapidness of the development.

Seen as a practical approach to generate complex, force-
sensitive interactions with the environment, this controller
could also augment the repertoire of classical controllers.
Additionally, it may shed light on how biological muscu-
loskeletal systems generate the complex trajectories they use
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In this context, we believe our results are relevant for under-
standing the early sensorimotor development of infants and
at the same time give new impulses for development robotics.
The essential merit of our controller is that it provides a sys-
tematic approach for behavioral self-organization, avoiding
the reality gap as demonstrated for instance by the robot at
the wheel scenarios. Our experiments with interacting robots
gives examples of social interaction in a minimalistic form.
In particular it suggests that certain type of interactions may
be a simple byproduct of a generic drive to bring internal
dynamics in coherence with the external world.

Another point concerns the role of spontaneity and volition
in nature. Obviously, acting spontaneously is an evolutionary
advantage as it makes prey less predictable to predators.
Attempts to explain spontaneity and volition range from
ignoring it as an illusion to rooting it deep in thermodynamic
and even quantum mechanical randomness [26], [27]. We
cannot give a final explanation, but we can give a tentative
solution to the dilemma how a system, if governed by a
deterministic controller, can be free/act spontaneously in any
sense: our deterministic neurocontroller obviously provides a
clear example of how a great variety of behaviors can emerge
spontaneously in deterministic systems by a deterministic
controller due to the said symmetry breaking effects in sys-
tems at the edge of chaos. Similarly, there are recent trends in
explaining the apparent stochasticity of the nervous system
through the complexity of deterministic neural networks [28],
[29], [30].

Eventually, the results may not only be of immediate
interest for the further development of embodied intelligence.
They also offer a new view on the role of self-learning
processes in natural evolution and in the brain.
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