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Abstract. One of the long-term goals of artificial life research is to
create autonomous, self-motivated, and intelligent animats. We study
an intrinsic motivation system for behavioral self-exploration based on
the maximization of the predictive information using the Stumpy robot,
which is the first evaluation of the algorithm on a real robot. The control
is organized in a closed-loop fashion with a reactive controller that is
subject to fast synaptic dynamics. Even though the available sensors
of the robot produce very noisy and peaky signals, the self-exploration
algorithm was successful and various emerging behaviors were observed.

Keywords: self-exploration, intrinsic motivation, robot control, infor-
mation theory, dynamical systems, learning

1 Introduction

One of the long term goals of artificial life research is to create autonomous,
self-motivated, and intelligent animats. It has been repeatedly argued, e.g., in
[19], that one of the prerequisites for a successful interaction of such complex
agents with their environments is the exploitation of their embodiment. In other
words, the agent has to acquire knowledge on the impact of its actions on its
sensory information and the environment. Developmental robotics, aiming at
mechanisms for creating a mind in an embodied agent through a development
process, formulates the following additional requirements [11] for the learning
system: not task specific, environmental openness, raw information processing,
online learning and a continual learning ring/hierarchy.

In this context different artificial intrinsic motivation approaches have been
proposed. For example, there exist frameworks based on learning progress [10,
18, 21] and novelty [9], on the reinforcement learning framework, or based on
homeokinesis [4], predictive information maximization [12] and empowerment [8]
as gradient methods on information theoretic or dynamical systems quantities.

This paper uses predictive information maximization (Pimax) [12], which
has been previously successfully applied in simulation, but is here, for the first
time, applied to a real robot, more specifically to the robot Stumpy [7]. Predictive
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information is the past-future mutual information and measures how much infor-
mation (in Shannon sense) can be used from the past of a time-series to predict
the future. It is different from the bare prediction quality as it also requires the
information content itself to be high. This avoids the “dark room problem” [6],
i.e., doing nothing in a dark room is best predictable. Consequently, if one would
optimize the prediction quality, the agent would not depart from this situation.
The Pimax approach, however, differs by yielding active and coordinated be-
haviors from scratch in a short amount of time (a few minutes of interaction)
and is thus particularly suitable for real robots where the possible interaction
time is very limited. In order to estimate the predictive information locally, an
internal model is required. This technique is widely used in robotics, e. g. to
perform mental simulation [3, 20], and it is also believed to play an important
role in human motor planning [22].

In terms of the above mentioned requirements for a developmental program
our approach satisfies all but the learning hierarchy by being not task specific,
environmentally open, operating on raw sensor information in an online learning
fashion. Challenges we address are the from-scratch formation of sensorimotor
coordinations leading to smooth behavior, the autonomous selection of sensor
information for a particular behavioral mode and the coping with morphological
changes.

The Stumpy robot used for the experiments was designed to comply with the
principles of cheap design and ecological balance as described in Iida et al. [7],
also see Pfeifer and Bongard [19] for a comprehensive overview. The basic design
idea was to demonstrate the concept of embodiment, i.e., to show that complex
behavior can emerge even from a simple structure due to its physical interaction
with the environment. In its original form, the robot was controlled in an open-
loop manner by an operator using a joystick. Despite its remarkably simple
design, a range of interesting stable locomotion behaviors were demonstrated.

For our experiments we equipped Stumpy with additional sensors and cre-
ated an adaptive closed-loop system enabling the robot to self-explore its be-
havior space. The added acceleration sensors provide signals that are very noisy
and dominated by shock events. Nevertheless, the implemented approach was
successful and was able to generate a variety of smooth locomotion behaviors.
Section 2 will give an overview on the Stumpy robot followed by the description
of the control algorithm in Section 3. In Section 4, the experimental results are
presented.

2 Stumpy, the Pendulum Driven Rocking Robot

The robot Stumpy was first introduced in Iida et al. [7]. The mechanical design of
the latest version of Stumpy (developed at the AI-Lab in Zurich [1]) is depicted
in Fig 1(a). It has only two joints, which are actuated by servo motors.

The robot is a simple metallic beam structure. Note that due to its design the
robot exhibits compliance to a certain extent by the torsion of the beams, which
allows for the emergence of dynamic behavior. In addition, rubber blocks are
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(a) construction (b) side view (c) picture with Wiimote

Fig. 1. The Stumpy. (a,b) Schematic construction: d = 25 cm, lb = 30 cm, l1 = 25 cm,
l2 = 20 cm, lt = 42 cm, ϕ1 = ±90◦, ϕ2 = ±35◦. (c) Picture of the robot.

attached to the feet to absorb impact shock. While originally the robot was con-
trolled by a human via a joystick in an open-loop fashion, for this work, Stumpy
has been equipped with sensors in order to obtain a closed feedback loop that is
autonomously driven by the Pimax algorithm. For simplicity, we use the com-
mercially available controllers of the gaming console Wii by Nintendo [17] called
Wiimote and Nunchuk. Both measure the acceleration in all three dimensions in
the range of ±3 g and ±2 g, respectively. The placement of the sensors is depicted
in Fig 1(c). The Wiimote can send the data via a Bluetooth connection to the
controlling computer [5] at a frequency of approximately 13–25 Hz. The control
signals are also sent to the robot via Bluetooth.

The locomotion of Stumpy is achieved by exploiting its inverse pendulum
dynamics. By rotating the whole upper part of the body (using the bottom mo-
tor) left and right, enough momentum is eventually created to lift one side from
the floor, to alternate between left and right on the spot. If the upper horizon-
tal beam is moved as well (rotation of the top motor), it can perform forward
and backward movements or turns. Human operators have been exploring many
different modes by varying the parameter of the open-loop controller, which are
frequency and amplitude of a sinus wave for both DoFs and a phase-shift be-
tween them. In contrast to that, in our case the robot is controlled by a reactive
controller that uses only the available noisy sensors and it explores the robot’s
behavioral capabilities in an autonomous, intrinsically driven process.

3 Predictive Information Maximizing Controller

The controller we use for our experiments is the predictive information (PI)
maximizing controller (Pimax) introduced in Martius et al. [12].

We consider the sensor values as a stochastic process St with real-valued real-
izations st ∈ Rn. The PI [2] measures the mutual information between past and
future of a time series. Intuitively, the PI corresponds to how much information
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can be used from the past to predict the future. The rational to use the PI of
the sensor stream as intrinsic motivation is that its maximization leads to a high
variance in the sensor values, while keeping a temporal structure. We consider
the simplified one-step PI

I(St;St−1) =

〈
ln

p(st, st−1)

p(st−1)p(st)

〉
= H(St)−H(St|St−1) (1)

where H(·) denotes the Shannon entropy. In order to work with non-stationary
processes, which is characteristic for this case, we consider a time-local version
called TiPI. Furthermore, to turn this formula into an operational algorithm, we
formulate it in the form of a dynamical system.

The stochastic process S can be decomposed as

st = φ (st−1) + ξt = V K(st−1) + b+ ξt (2)

into the deterministic model φ and a stochastic component ξt, also called pre-
diction error. The matrix V and the vector b represent the parametrization of
the predictor, which are adapted online by a supervised gradient procedure to
minimize the prediction error ξ>ξ as ∆V = ηφξa

>and ∆b = ηφξ. The learning
rate has been set to ηφ = 0.05, which allows a fast adaptation process. The re-
active controller K producing the actions (motor values) is realized as a neural
network

at = K (st) = tanh (Cst + h) (3)

with weight matrix C and bias vector h (tanh is understood component-wise).
The entire setup is illustrated in Fig 2.

World

Predictor/
Model

ControllerSensor values

Motor values

Fig. 2. Sensorimotor loop with controller, predictor and world.

Let us now return to information theory. The TiPI is given by the mutual
information conditioned on a fixed sensor state experienced at the beginning of
a moving time window of τ steps Iτ (St;St−1) := I (St;St−1|St−τ = st−τ ), here
we use the simplest case τ = 2. With a coordinate transformation relative to the
start of the time window δst′ = st′ − st−τ for t− τ ≤ t′ < t we can approximate
the TiPI assuming Gaussian noise by

Iτ (St : St−1) =
1

2
ln |Σt| −

1

2
ln |Dt| (4)
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where Σ =
〈
δsδs>

〉
is the covariance matrix of δS and D =

〈
ξξ>

〉
is the

covariance matrix of the noise. Sampled covariance matrices tend to be very
noisy. However, for calculating the gradient below we can make use of an explicit
expression for the Σ using the model φ. This is done by approximating δst′ in
terms of the Jacobian L (state dependent) as δst′ = L (st′−1) δst′−1 + ξt′ where
δst−τ = 0. In our case the Jacobian matrix is given by L = V G′ (z)C, where
z = Cs+ h and G′(z) = diag[tanh′(z1), . . . , tanh′(zm)].

The controller parameters (C,h) are adapted to increase the TiPI using gra-
dient ascent, i. e. ∆C ∝ ∂Iτ

∂C , which yields the following simple update rules:

1

ε
∆Cij = δµiδsj − γiaisj , and

1

ε
∆hi = −γiai , (5)

where all variables are time dependent and are at time t, except δs, which is at
time t− 1. The vector δµ ∈ Rm is defined as

δµt = G′V >Σ−1δst (6)

and the channel specific learning rates are given by γi = 2 (Cδst−1)i δµi. The
learning rate was set to ε = 0.1. It is interesting to note that the covariance
matrix of the noise (D) cancels and does not enter the update formulas. The
inverse of the covariance matrix Σ in Eq (6) is sampled with an exponential
moving average with 100 timesteps. In practice, we found that it may even be
replaced by the identity matrix (which is not done here). For the derivation and
more details we refer to [12].

4 Experiments

Several experiments have been conducted applying the Pimax algorithm to the
Stumpy robot. Note that the behavior can only emerge through the connection of
sensors and motors via (Eq 3). This connection, however, is constantly changing
during exploration to locally maximize the TiPI. This results in an intricate
interplay between physical dynamics and parameter dynamics. We will proceed
by analyzing the sensor data and then present the self-exploration process.

4.1 Evaluating sensors

First, we evaluated the sensors by controlling the robot in an open-loop fashion
as described in [7] in a forward locomotion. Both motor signals followed a sine
wave at 1.7 Hz with a certain phase-shift between the bottom and top motor.
The corresponding sensor readings, however, are very noisy and, on first glance,
do not seem to reflect the harmonic control signal (see Fig 3).

However, performing a wavelet transformation of the sensor time series allows
us to identify two sensors (s3, s4) that show a major oscillatory component at
1.7 Hz (see Fig 4). However, to demonstrate that the algorithm is able to find
its most valid sensor information on its own, we provided all sensors (s1, . . . , s6)
to the controller. Although this seems to be a very challenging task, as we will
see, our self-organizing control approach is able to overcome these difficulties.
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Fig. 3. Motor and sensor values for a forward motion. Top: motor values following a
sine wave of 1.7 Hz (nominal angle normalized to [-1,1]). Center and bottom: sensor
values from lower and upper acceleration sensors, see Fig 1(c). The harmonic control
signal cannot be identified from the very noisy sensor readings. Update frequency was
14 Hz.

4.2 Behavioral Self-Exploration

For the rest of the paper the robot is controlled by the reactive controller (Eq 3)
with the learning dynamics given in Eq (5). Initialized with a “do nothing”
controller (i.e., all synaptic weights set to 0) and a randomly initialized forward
model, the robot starts to gently move after some initial time. The entropy
term in the PI (Eq 1) drives the system to activity, which initially leads to a
progressive noise amplification. As soon as the movements becomes large enough
to cause a definite effect on the sensor values, the forward model is able to
capture these correspondences and the movements become more coherent and
related to the body/environment. A rocking behavior quickly emerges, which
develops into different types of locomotion and swinging behavior. The evolution

s3, bottom left-right s4, top front-back s6, top left-right
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Fig. 4. Wavelet transform of sensor values for forward motion with open loop control.
The prominent frequencies are clearly visible at 1.7 Hz for the sensors s3 and s4. Even
though the robot is making periodical movements, the other sensors do not show a
clear major frequency (s1,s2,s5 are less pronounced than s6). Update frequency: 14 Hz.
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Fig. 5. Time evolution of the weights of the controller and the forward model.
(a) Movements classified visually into: rest, swinging, low, high, falling, and crawling
see text. (b) Entries of the controller matrix C over time. The weights adapt con-
stantly without making big jumps. In this way the controller is able to produce various
motions, see (a). At about 15700 and 18000 the robot tips over. (c) Weights of the
forward model (matrix V ). Update frequency was 23 Hz.

of the controller parameters during an typical run is displayed in Fig 5(b). The
elements of the matrix C (Eq 3) change constantly, which is expected from the
algorithm. The gradient on the TiPI is never zero as long as there is a non-
zero prediction error. This is counter-intuitive, but can be understood by the
fact that the landscape (the TiPI) changes with the behavior. Thus, all values
change during the whole experiment in a more or less smooth fashion. The
robot starts to move at approximatelly step 3000. Then it rather quickly enters a
swinging motion followed by a slow, but steady sweep through several behaviors,
see Fig 5(a). For simplicity the behaviors are grouped into the following types:
“low” movement: robot is either locomoting with low amplitude or it is trying to
excite a new mode (feet are on the ground); “high” movements: cause locomotion
with high amplitude; “swinging” means rocking at the spot with high amplitude
and balancing with the top to not fall; “falling”: which is due to swinging to
high; and “crawling” means locomotion in laying position. The disturbance at
step 15700 is introduced by Stumpy falling over. Immediately afterwards it has
been manually lifted. After step 18000, the robot fell another three times and,
finally, was left in this state, where it produced, suddenly confronted with a
completely different body/environment relationship, remarkably fast a crawling
behavior.

There is no obvious relationship between the controller parameters and the
observed behavior (Fig 5(a,b)). Apparently, different parameter configurations
can lead to similar behavior. The forward model has a more defined structure, at
least later in the experiment, see Fig 5(c). During the swinging and high motions,
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high rocking, slow locomotion swinging, moving in place

Fig. 6. Different behaviors emerged from the control of the Stumpy with the Pimax.
During the swinging motion, the robot swings to either side and then, just before falling,
moves the upper body towards the center. Further behaviors include fast locomotion
with low amplitude, and swinging and turning to either side. Videos are available [16].

the values V32 and V62 (reflecting the correspondence between motor actions and
left-right accelerations) raise in value. For low movements, the model collapses,
because of no or little defined responses in the sensors.

In order to give an impression of the behavior, Fig 6 shows a series of frames
for different movements. To get a quantitative characterization of the behavior,
wavelet transformations of the motor and sensor values have been carried out
and are presented in Fig 7. It can be seen how the main frequency changes with
the behavior being lower for high and swinging movements and higher for low
movements. Note that these frequencies are still lower than the ones induced
by the forward movement in the open-loop setup (operator and joystick). It
remains for future work to evaluate whether these movements are closer to the
Eigenfrequency of the system and, thus, more energy efficient.

A variety of different behaviors have been generated including transitions
between them. So far we have analyzed a single run to identify some key fea-
tures of the behavioral self-exploration process. In order to see which effect the
initialization has on the performance, we ran multiple runs and found consis-
tently similar results. The exact order and timing of individual movements were
different, but typically all types of movements have been generated.

4.3 Changing the Morphology

Since the Pimax algorithm does not have any information about the robot under
control (except the number of sensors and motors), changing the morphology of
the robot should make no difference to the algorithm. It explores and exploits its
given embodiment. In order to demonstrate this remarkable capability, we first
put the Stumpy robot intentionally horizontally on the ground, as it already
happened accidentally at the end of the exemplary run. The Pimax algorithm
achieves a crawling movement after a few seconds. The result can be seen in a
video [16].

A modification of the morphology of the robot was carried out by putting
Stumpy into a Chinese cooking pot, also called wok. The wok was modified on
the bottom to make a smooth rotating movement possible and it was equipped
with a heavy weight to prevent the construction from falling over. When the
algorithm started to work, an emerging rotation motion of the wok was observed,
see Fig 8. The motion was very steady and smooth, also due to the fact that the
sensor readings were much smoother than compared to the previous experiments,
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Fig. 7. Wavelet transform of the sensor and motor values for the exemplary experiment.
It is clearly visible that the prominent frequency fluctuates around 0.5 to 1.5 Hz which
corresponds to various motions. Also both motors behave in an individual way which
leads to a high variance in motions and transitions between motions. Only the sensors
s3, s4, and s6 show a characteristic footprint of the motions (s1, s2, s5 not shown). The
sensor s4 (top front-back) shows a faint trace typically at twice the frequency.

where the robot had to deal with strong impacts. This can also be observed in the
collected sensory data and the corresponding wavelet transformation in Fig 8.
In this experiment the robot started to rotate already after about 70 seconds
(step 1600). After 150 seconds (step 3250) the robot was manually stopped. It
took the algorithm only a short amount of time to reenter the rotating motion
(25 sec).

5 Discussion

We report on the control of the robot Stumpy with the Pimax algorithm to
obtain a self-organized behavioral exploration. Even though there is no specific
goal, just the generic drive to locally maximize the predictive information of the
sensor stream, the algorithm generates a variety of active behaviors that exploit
the given embodiment. When the robot is upright, different movements emerge
including various types of locomotion, turning, and swinging. When the robot
lays on the ground, a crawling behavior is generated, and when the robot is
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s6, top left-right
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Fig. 8. Stumpy rotating with an attached wok. Left: frames from the behavior. Right:
wavelet transform of the sensor s6, (s1,3,4 have a similar spectrum). The behavior is
very smooth and steady at a frequency of ≈ 0.8 Hz. The robot was stopped manually
at step 3250 (black dashed line) and recovered itself, for videos see Martius et al. [16].

placed in a wok (Chinese cooking pot) it starts to excite a stable rotation move-
ment. The performance of the system is even more astonishing given the available
sensor quality. The control of the robot is based on two 3-axis acceleration sen-
sors in a reactive manner (no pattern generator nor recurrent connections, but
fast synaptic dynamics). The acceleration sensor values are dominated by shock
events and seem to be unusable for a smooth control at first glance. However,
as it was demonstrated, the Pimax algorithm organizes the sensorimotor loop
in such a way that smooth behaviors are generated. Due to its fast adaptation
mechanism, it can quickly react to changing responses of the physical system,
e. g. due to a different behaviors mode. In this way it amplifies latent modes,
such as swinging at intrinsic frequencies or the rotation of the robot with the
wok. At the same time it can cope with drastically different situations, e.g. when
the robot tips over.

On a higher level of learning, the found behaviors can be potentially mem-
orized as primitives [14] such that they do not need to be rediscovered every
time. As demonstrated (see Fig 5) the algorithm generates different behavioral
modes that are persistent for some time and then transition to other modes.
Each of these can be captured as a primitive behavior either by storing the con-
troller parameters or by training a separate control module [14]. If goal directed
behaviors are to be achieved then these primitives can be used as actions in a
reinforcement learning setup. Alternatively, the self-organization process itself
can be guided with various methods, see [13] for an overview, which have been
shown to be particularly powerful in high-dimensional systems [15].
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