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Abstract

Embodiment and self-organization (SO) form two cornerstones of both mod-
ern robotics and the understanding of human and animal intelligence. While the
role of the embodiment for the behavior has become of much and increasing inter-
est in recent times, the attitude of the community toward SO is still characterized
by some reservations. These concern on the one hand the question how a robotic
system can be made to self-organize its behavior in a systematic and transparent
manner. There is some progress in that direction by several objective functions
for SO and learning rules derived thereof. Based on general principles, these ap-
proaches are domain invariant and free of arbitrariness. However, and this seems
to be the main argument, if nothing is specified from outside, will SO simply make
the robot an arbitrary subject that is completely unpredictable in its behaviors and
thus rather a thread than a hope. The aim of this paper is to show that this at-
titude is not justified. Instead, we develop an understanding of what happens if
the system is self-organizing, what the role of the embodiment is and how we can
find clues for predicting and shaping the behavior patterns emerging in a genuine
SO scenario. The approach is based on a new unsupervised learning rule staging
two antagonistic activities—driving systems towards instability while preserving
the geometric and physical symmetries of the system as much as possible. This
leads to a spontaneous symmetry breaking scenario, the guiding phenomenon of
SO known from nature. It is shown by a number of examples that the unsupervised
learning rule induces an amazing variety of behaviors—patterns in space and time
that can be interpreted as broken symmetries.

1 Introduction
Embodiment and SO form two two cornerstones of both modern robotics and the un-
derstanding of human and animal intelligence. In particular, the role of the embodiment
for the behavior of both artificial and natural beings has become of much and increas-
ing interest in recent times. In robotics, there are essentially two attitudes towards
the physical embodiment. On the one hand, with rule based systems and/or systems
intended to execute a given motion plan, embodiment is more or less considered as
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a (nasty) problem opposing the execution of the plan. On the other hand, it is well
believed and verified by many examples that living beings are taking much advantage
from the physico-mechanical properties of their bodies in order to create natural mo-
tion patterns. This can be of immediate benefit for more robust or energy effective
control in robotics, e. g. The importance of the embodiment for the behavior genera-
tion and intelligence in general has been advocated with great impact on the scientific
community mainly by the lab of Rolf Pfeifer, see [30, 33, 31] for excellent surveys. In
recent years this has been further established under the connotation of morphological
computation [32, 19, 29, 18]. Seminal contributions are also by the lab of Helge Ritter
[37, 17, 4, 12, 38, 28] and others.

Self-Organization (SO) may provide an essential progress in the realization of em-
bodied control. Viewing a robot in its environment as a complex dynamical system, SO
can help to let highly coordinated and low dimensional modes emerge in the coupled
system of brain, body and environment. In this way, instead of being programmed for
solving a specific task, the robot may find out by itself what its bodily affordances are,
focusing only in a second step on the exploitation of the emerging motion patterns—by
guiding the SO process into the directions of potential benefits.

This paper studies the relation of embodiment to self-organization in autonomous
robots. This project faces essentially two challenges. One is how to organize a robotic
system in such a way that it starts to self-organize. There are several approaches into
that direction based on formulating objective functions for SO. In recent years, several
such OFs have been proposed, ranging from the maximization of predictive information
[3, 2, 27] or empowerment[21, 22, 1, 20], to the minimization of free energy [13, 14,
16, 15] or the so called time-loop error in the homeokinesis approach [8, 10, 11], see
also [34, 35, 36] for more details on how to organize SO. Given an objective function,
the optimization process can be translated into a learning rule that is driving the SO
process. This paper introduces a new learning rule together with some case studies
demonstrating its usefulness. So, there are several pretty satisfying approaches in the
SO paradigm.

The second challenge actually is more serious and might be the reason why in
the community SO is seen more as a wishful thinking than a systematic approach to
autonomous robot development. With genuine SO one must be careful not to plug in
(by biasing the system) what one actually wants to get out. The approaches mentioned
above all seem to fit that criterion. However, and this seems to be the argument, if
nothing is specified from outside, will SO simply make the robot an arbitrary subject
that is completely unpredictable in its behaviors and thus rather a thread than a hope.
The aim of this paper is to show that this attitude is wrong. Instead, we will develop
an understanding of what happens if the system is self-organizing, what the role of
the embodiment is and how we can find clues for predicting and shaping the behavior
patterns emerging in a genuine SO scenario.

In order to prepare the ground for the role of the embodiment in SO, we give some
examples of systems unfolding complex motion patterns with minimalistic control. We
start from the famous example of the Braitenberg vehicles (BVs) which we consider
as an early case study of machines which develop complicated behaviors on the basis
of an extremely simple construction. By these examples, we want to make the reader
aware of the phenomenon of spontaneous symmetry breaking that in our opinion is
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instrumental for understanding how SO can be effective in robotic systems. We think
that the robotic community so far has overlooked the importance and substance of that
phenomenon. Therefore, this paper will also follow a pedagogical purpose.

The paper is organized as follows. After introducing the original idea of Valentin
Braitenberg and variations thereof in Sect. 2, we introduce in Sect. 3 a much more
complex body, our HUMANOID, that develops a complex behavior mode under a mini-
malistic control. This gives us the opportunity to introduce the concept of fundamental
modes, dynamical patterns that are specific for a particular body under homogeneous
energy feeding condition. This is also a first example of spontaneous symmetry break-
ing (SSB). Sect. 4 introduces the new learning rules for driving SO based on a recent
result from maximizing predictive information [27], followed by a short aside on the
principle of homeokinesis in Sect. 5 containing a comparison between the two meth-
ods. Sect. 6 is devoted to a deeper discussion of fundamental modes and the mechanism
of SSB. After discussing these phenomena with the example of the autistic vehicles,
Sect. 7 and Sect. 8 study these questions with the HUMANOID and the HEXAPOD robot.

2 Vehicles
Let us start with a few ideas on what we want to understand by embodiment and its
synergy with the "brain". Let us go back to a very instructive example given by Brait-
enberg [6] in order to better understand the synergy concept.

2.1 Braitenbergs idea
His idea was to use very simple machines in order to demonstrate the emergence of
complex behaviors determined by the very physical construction of those machines. In
the most simple case, the machine is a two-wheeled robot with two photo cells mounted
to the left an right front side of the trunk. the photocells are wired to the motors either
diagonally so that the vehicle is approaching the light source and bangs into it, or direct
so that ligt sources are acting as a repeller.

Besides the phenomenon of emerging functionality observed in those machines,
there is another fact we want to draw attention to. Both in the basic and also in the more
elaborate examples, it seems more or less artificial to make a distinction, as is done in
most robotics approaches, between the body and the "brain". Instead, we see a physical
system—a mechanical part consisting of the body and the wheels combined with an
electrical part consisting of the photo cells, the motors and the wires. With this setting it
seems more natural to see the machine as a whole, instead of subdividing it into a body
and a controller acting as a (kind of) brain. Of course, which attitude to take is always
a matter of taste, weights shifting more toward a clear partitioning with increasing
complexity of the “brain”. This paper, keeping control as simple as possible, is more
in favor of the holistic attitude: considering the machine—body, sensors, and wiring—
as one physical system that, in the Braitenberg case, may function even completely
autonomously since it receives all the energy it needs from its sensors, the photocells.
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2.2 Autistic vehicles
The properties of the most simple vehicles are self-explaining given that the behavior
is driven by the energy provided by the photo cells together with the specific wiring. If
translated to humans or higher animals, this corresponds to a system driven by vision
alone. However, their motion control is largely depending also on the signals they are
receiving from proprioception, like the joint angles and the muscle tensions. In order
to mimic the role of those sensors, we are going now to restructure the BVs by in-
cluding proprioceptive sensors. In particular, we introduce wheel counters, measuring
the rotational velocity of each of the wheels. Wiring can be done in the most simple
case by connecting the right (left) wheel sensor to the right (left) motor and vice versa.
However, we do now need active wires which feed energy into the system (there is no
perpetuum mobile of the first kind).

Such an active, nonlinear wire can be realized by a simple neuron, that translates the
input (wheel velocity) into an output— the target wheel velocity that is subsequently
realized by the motor using electrical energy supplied from outside. In detail, we use a
neuron as

y = tanh(cx+h) (1)

where c is the coupling strength and h a threshold to be put equal to zero for the mo-
ment. This setting has been studied before in different contexts. The behavior of the
wheel can be seen if we consider the full sensorimotor loop (SML). What we need for
that is the connection between the target motor values y and the corresponding wheel
velocity x as measured by the wheel counter. Assuming a linear relation between the
two, the SML can be modeled by the following dynamical system.

x′ = ay+ξ = a tanh(cx+h)+ξ (2)

where x′ is the new vector of sensor values, ξ is to contain all the deviations from
the linear law, and a is a hardware constant with a = 1 if the wheel counter is scaled
appropriately. In many applications, ξ can be treated as pure noise.

The behavior of the vehicle can be analyzed best by asking for the fixed points
(FPs) of the dynamical system which are obtained from x = ay or (with a = 1)

x = tanh(cx) (3)

There are a number of different regimes. Let us consider first the case 0 < c < 1 with
the single FP x = 0 corresponding to wheel velocity equal to zero. With noise, each
wheel velocity is fluctuating around zero so that the vehicle executes a random walk.
With c > 1 the system is bistable. If c = 1+ δ , with δ > 0 small, the FP is given
approximately as x =±

√
c−1, see [11] for details. In this case, the system is in one of

the FPs but can be switched by the noise. So, the wheel is rotating for some time into
one direction with occasional changes of direction. This effect generates an irregular
motion of the vehicle due to the noise. In particular, upon colliding with an obstacle,
the velocity may switch so that the vehicle is kind of reflected by the obstacles. This
may be seen as a basic survival strategy emerging from this minimalistic control. In
this sense, the autistic vehicle still does show certain reactions to the environment.
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However, these are restricted to noise or physical encounters and the perturbations
generated thereby.

With c < 0, the output of the neuron (motor command) is always opposite in sign to
its input so that the motor always gets contradictory commands which might eventually
lead to the destruction of the motor. Therefore, this regime was called the regime of
self-destruction. However, we will see in Sect. 3 below that, based on the specific
physical embodiment, this regime may also deploy highly interesting modes.

Altogether there are not much interesting properties of that autistic vehicle. A
first interesting result is observed if several such two-wheeled vehicles are coupled
passively together. In that case, the physical cross-talk—the coupling forces produced
by different wheel velocities of neighboring vehicles—may switch the wheel velocities
so that eventually a collective motion of the system emerges. This has been studied
extensively earlier [9, 41, 11] so that we do not go into details here. Instead we consider
other more complex systems where a collective motion is emerging from decentralized
control in a surprising way, see Sect. 3 below.

2.3 Symmetries
Symmetries and their breaking play a central role in this approach. Let us start here
with the standard scenario of inducing the breaking of a given symmetry by manually
driving certain parameters of the system over a bifurcation point. The self-induced
breaking that is of actual interest for this paper will be discussed in Sect. 6 below. By
way of example, let us consider the autistic vehicle introduced above with a single
wheel running on a rail. Assuming there is a perfect forward-backward symmetry of
the morphology, the system is invariant against inversion of the x-axis, i. e. it obeys the
symmetry S : x→−x.

Given that the controller is invariant against S and assuming that the noise also is,
we find that there is no clue for the controlled system to prefer a specific direction in
space1. In the regime with only a single FP (0<c<1), this means that the trajectory is
fluctuating around the FP x = 0. In the sense of a classical bifurcation analysis, we can
now increase the coupling strength c. When crossing the bifurcation point, the system
is entering its bistable regime with two stable attractors corresponding to the wheel
rotating forward or backward. Which one is chosen is determined by the noise so that
we have here a trivial case of noise-induced symmetry breaking.

3 The Braitenberg man—Fundamental modes
Let us now extend Braitenberg’s idea to a more complicated machine—our HUMANOID
with a specific wiring.

1With noise the symmetry is to be understood in the stochastic sense, meaning that that each trajectory
finds its counterpart—a trajectory that is realized with the same probability—by applying the symmetry
operation.
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3.1 The HUMANOID

We consider a humanoid robot with 17 active degrees of freedom. Each joint is driven
by a simulated servo motor, the motor values a ∈ R17 sent by the controller being the
target angles of the joints and the sensor values s ∈ R17 are the true, i. e. observed
angles. This is the only knowledge the robot has about its physical state. The physics
of the robot is simulated realistically in the LPZROBOTS simulator. Let us introduce a
specific wiring in analogy to the autistic vehicle: each joint i is controlled by a single
neuron generating the control yi = tanh(cxi) for motor i, with c a constant coupling
strength, the same for all joints. In the terminology of Braitenberg the neuron can be
considered as an active, nonlinear wire. By this wiring, like in the case of the coupled
vehicles mentioned above, we have a system with fully decentralized control (called
split control in [41]).

3.2 A fundamental mode of the HUMANOID

The interesting behavior emerges if we give the robot much freedom to develop its
specific, body-inspired motions. In the experiment, we suspend the HUMANOID like
a bungee jumper. After starting it in a position slightly above the equilibrium point
of the robot-spring system, the robot is seen to fall down a short distance and then
oscillates vertically for a while due to the elastic forces of the rope, without develop-
ing internal motions of its own. Its further fate depends essentially on the coupling
strength c. We do not observe much of interest for positive coupling strengths. In-
stead, there is a critical negative value ccrit so that with c < ccrit , the robot is seen
in the experiment—after the oscillatory phase—pretty soon to go into a regular, pe-
riodic motion. This is achieved by self-amplification of initial, very small perturba-
tions, see the video S1 (in the supplmentary material on http://robot.informatik.uni-
leipzig.de/research/supplementary/GSO2012/). The interesting and on first sight sur-
prising observation is that this motion is very similar to a running behavior. In partic-
ular, despite of the completely decentralized control, arms, legs and hip motions are
seen to be synchronized with fixed phase relations like with a running human.

Why is that? How do the individual controller know of each other? In order to
discuss this point we must remember that the coupling constant is strongly negative
so that actually we are in the regime of self-destruction. However, in the physical
system, motor forces are confined to a low range so that—given the inertia due to the
masses of the segments—the joint angles can change only slowly. Thus, if a joint
angle is largely negative, a strong positive motor command is generated that engenders
a motion towards the region of positive joint angles. Overshooting (by inertia) the
region of small joint angles, the scenario repeats with an impact towards negative joint
angles. Altogether this produces an oscillatory motion of the joint with frequency
and amplitude depending on the motor forces and masses of the moved segments in a
complicated way.

This effect explains the latent oscillatory mode of each individual joint. But why
the (running like) coordination between the segments? Well, the motions are seen to
be quite rapid so that there are heavy intra-robot physical forces: by the inertia effects,
any motor activity changing a joint angle will generate a heavy impact on its neighbors.
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Figure 1: One half-period in the running motion pattern of the Braitenberg man. ( In
the simulation we use a time average by 15 steps of the sensor values, i. e. s4avg = 15,
powerfactor = .6, and cInit=-1.2.)

So, like with the chain of wheeled robots, there is a strong physical cross-talk that is
the communicatory basis of the intra-robot coordination phenomenon. Spontaneous
symmetry breaking (SSB) comes into play here. The point is that, by construction,
the specific wiring, and the identity of all the coupling constants, the system is highly
symmetric, any emerging motion pattern corresponding to a specific breaking of that
symmetry. Due to the overcritical negative feed-back strength given by c< ccrit , there is
a strong tendency of self-amplification of the physical cross talk. Given the high degree
of symmetry at the start, this self-amplification induces a symmetry breaking with a
specific motion pattern emerging. Choosing the perturbations by hand, many different
motion patterns are possible but in the experiments, the running motion pattern (RMP)
is dominating, i. e. it seems to be the most stable one—once the pattern is established
one may perturb it by external forces but, in most cases, the pattern is recovered after a
short time.

The above mechanism also explains why we want to call the emerging dynamics a
fundamental mode of the system. We borrowed that term from physics where funda-
mental modes (often called normal modes) are common phenomena. For instance, in
coupled systems of linear or nonlinear oscillators low frequency modes are emerging
where all oscillators are synchronized having a fixed phase relation. In neuroscience
such modes are also known for networks of integrate-and-fire neurons, e. g. Synchrony
and fixed phase relations are also featuring in the RMP—the individual constituents of
the body are moving in a highly coordinated manner. Moreover, the mode may be
called fundamental since it is a dynamical pattern that is specific for this particular
body under the homogeneous energy feeding condition: the intake of energy is regu-
lated for each motor in the same way by an individual feed-back loop with the same
coupling constant. Yet, despite this structural homogeneity we get a highly structured
dynamics.

The existence of the fundamental mode heavily relies on the specific conditions, in
particular the freedom of movement as realized in the case of the bungee jumper. When
lying on the ground, the robot will not develop any interesting activity. With most
values of |c|< ccrit , the robot will reach a fixed point behavior, ccrit corresponding to the
overall critical feed-back strength. With super-critical values, the motions are confined
by the contact with the ground. These restrictions are overcome with a convenient
method for self-organization of the behavior as we will develop it in the following.
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4 Unsupervised learning for self-organization
So far, we have organized the system for generating specific modes by hand, using intu-
itive understanding of the physics and the physical cross-talk mechanisms. Let us now
start with developing a scheme for the self-organization of the system, hoping that the
system itself discovers such interesting phenomena like the existence of fundamental
modes.

In recent work, the so called predictive information (PI) was introduced as a gen-
eral objective function for SO[3, 2, 41, 27]. By maximizing the PI, a general learning
rule for the synaptic strengths of a neural controller network was derived on the ba-
sis of such an infomax principle. Different from infomax principles derived so far,
that method solves the task of relating the general principle, formulated at the level of
behavior, to the internal world of the robot, in to its brain, so to say.

The controller of the robot is given in our case by an artificial neural network
(ANN) transforming sensor values x ∈ Rn into motor values y ∈ Rm like

y = K (x, ...,w) (4)

where w are the parameters (synaptic strengths) and ... means some other, internal
variables which we will drop for the moment. The translation between the external
and the internal world can be done if there is a forward model predicting future sensor
values on the basis of the current sensor and motor values. In particular we need only
the relation between two time steps so that

xt+1 = φ (xt ,yt)+ξt+1

where ξ is the prediction error and the parametrized function φ : Rn×Rm→ Rn is the
predictor.

4.1 Learning rules for self-model and control
We consider here only the result for a specific controller—a one layer feed-forward
neural network realized as

K (x) = g(Cx+h) (5)

so that the set of parameters w = (C,h) is given by the synaptic values (matrix C) and
the vector h of threshold values for the neurons. In the concrete applications done in
this paper, we specifically use gi (z)= tanh(zi) ( so that g :Rm→Rm is to be understood
as a vector function).

Moreover, the forward model φ is given by a layer of linear neurons, so that

φ (x,y) = Ay+Sx+b. (6)

The matrices A and S, and the vector b represent the parametrization of the forward
model that can be adapted on-line by a supervised gradient procedure as

∆A = ηξ y>, ∆S = ηξ x>, ∆b = ηξ (7)
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with ξt = xt −ψ (xt−1). In the applications, the learning rate η may be large such that
the low complexity of the model is compensated by a fast adaptation process.

The learning rule for the controller, given in [27], was derived from maximization
of the predictive information. Based on that, we postulate a new unsupervised learning
rule (ULR) which will not be derived here but considered as intuitively grounded by
the discussion in Sect. 4.2 below. The rule is written as (all quantities are at time t)

1
ε

∆Ci j = δyiδx j− γiyix j (8)

1
ε

∆hi =−γiyi (9)

where δxt usually is the prediction error2 based on time t−1

δxt = xt −φ (xt−1,yt−1)

δyt is defined in terms of the world model as

δyt = JT
δxt+1 (10)

where

J =
∂φ (x,y)

∂y

is the Jacobian matrix of the model relating its output to the input y. In our linear
model, we simply have J = AG′ (z) where G′ (z) = diag[g′1 . . .g

′
m].

Moreover, γi is a neuron specific learning rate defined as

γi = 2βδyiδ zi (11)

where β is the so called sensitivity, an empirical quantity with β > 1, and

δ z =Cδx

is the perturbation of the post-synaptic potential due to δxt ,

4.2 Discussion of the learning rule. Symmetry breaking
The specific form of the learning rule allows for a very basic interpretation. Let us start
with the last term γiyix j contributing to ∆Ci j which is easily recognized as a Hebbian
term since it is the product of the input x j into the synapse Ci j times the activation yi
of neuron i. As such it would strengthen all tracks in the SM loop for which there is
a strong output of the motor neuron combined with a strong response from the outside
world as reported by the sensor value xi. In general, this would strengthen the activation
of any neuron in such a loop, eventually driving it into saturation. However, with the

2The new rule is not restricted to using δx as the prediction error. Instead we are free to consider δx as
any convenient change in or perturbation of the sensor dynamics. In the experiments described below we
used the change of the sensor values in one time step.
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negative sign (and γi > 0, as a rule), the term actually is an anti-Hebbian one avoiding
saturation of the neurons.

The first contribution, δyiδx j is a Hebbian again, formulated, however, not in the
excitations itself but in their deviations from the predicted values as generated by the
model. Given the relation between δyt and δxt+1, see Eq. (10), ∆Ci j is strengthened
if there is a strong correlation between3 δxt

i and the components of δxt+1being fed by
δyt

i . Roughly speaking, in that way the first term in the learning rule tries to increase
the propagation of perturbations δx, driving the system towards instability. So, as in
homeokinesis, we have two opposing terms which together should drive the system to-
wards an exploratory behavior. This will be exemplified here by a number of examples.

In the bifurcation scenario discussed in Sect. 2.3, symmetry breaking was induced
by changing the controller parameter from outside: when crossing the bifurcation point,
the system became bistable, the system state jumping into one of the two emerging
alternatives. What we have now is a self-referential system, a dynamical system that
changes its parameters by itself [11]. The decisive point in this scenario is the fact
that (i) the learning rule does not introduce explicitly any violations of symmetries of
the physical system it is applied to, but that (ii) the learning is driving the physical
dynamics towards instability, eventually causing a spontaneous breaking of existing
symmetries. This paper will present many examples of behaviors arising from this
mechanism of spontaneous symmetry breaking.

4.3 Relation to infomax principles
As mentioned already in [27], there is a close relationship of the learning rules to the
so called infomax principles. Maximizing the mutual information between input and
output of a unit is widely known as InfoMax. Applied to a layer of neurons the principle
yields an explicit parameter dynamics [5] structurally similar to the one presented in
[27] and the one given here. Also, similar rules have been obtained in [39] where
the entropy of the output of a neuron was maximized under the condition of a fixed
average output firing-rate. The resulting dynamics is called intrinsic plasticity as it
acts on the membrane instead of on the synaptic level and it was shown to result in
the emergence of complex dynamical phenomena [7, 23, 40, 24]. In [25, 26] a related
dynamics is obtained at the synaptic level of a feedback circuit realized by an autaptic
(self) connection. In a recurrent network of such neurons it was shown that any finite
update rate (ε in our case) destroys all attractors, leading to intermittently bursting
behavior and self-organized chaos.

Our work differs in two aspects. On the one hand, while the information theo-
retical principle—the starting point for our more intuitively based learning rule—was
formulated at the level of behaviors of the whole system, explicit learning rules were
derived at the neuronal level by rooting the behavioral level (outside world) back to the
level of the neurons (internal world). On the other hand, as a direct consequence of
that approach, there is no need to specify the average output activity of the neurons as
in [39]. Instead, the latter is self-regulating by the closed loop setting. Independent of
the specific setting, the general message is that these self-regulating neurons realize a

3We write the time as a superscript if components of a vector are considered.
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specific working regime where they are both active and sensitive to influences of their
environment. Instead of studying those neurons in internal (inside the “brain”) recur-
rences, we embed them into a feedback loop with complex physical systems where
these self-active and highly responsive neurons produce surprising phenomena at the
level of behaviors—in the outside world.

5 Homeokinesis: Body Inspired Behavior
This section will give a very short account of the principle of homeokinesis in order to
discuss the parallels and differences of the two related approaches. Reader not inter-
ested in this comparison may skip this section and go directly to the applications.

Before presenting several applications demonstrating the nature of the new learning
rule, let us make the connection to the principle of homeokinesis (HK), a general prin-
ciple originally proposed in [8, 10]. Homeokinesis, stands for the dynamical symbiosis
between brain, body, and environment and was shown in many works to drive robots
to a self-determined, individual development in a playful and obviously embodiment-
related way, see [11] for a detailed consideration. In numerous experiments a chain of
wheeled robots or of rigid segments self-organizes into a collective motion; dog-like
robot starts playing with a barrier, eventually jumping or climbing over it; a snakebot
develops coiling and jumping modes; humanoids develop climbing behaviors when
fallen into a pit, or engage in wrestling-like scenarios when encountering an opponent.
Moreover, methods are provided for guided self-organization, a new method that helps
to make the self-organizing machines able for fulfilling tasks in the real world.

HK is not only the description of a goal, namely the dynamical symbiosis between
brain, body, and environment but comes with a concrete realization in the form of
a universal learning algorithm. For the sake of completeness we are now going to
formulate the most basic features of the HK approach to self-organization.

A starting point for HK is the prediction error, as introduced in Eq. (4), measuring
the uncertainty of the internal world about what is going on in reality. The minimization
of the prediction error was discussed to generate a homeostatic system, realizing the
drive for an overall equilibrium stabilized against external perturbations. However,
in this way one does not get the curious and self-exploratory robot we want to create4.
Instead of realizing a general stasis in the system we want brain, body, and environment
to get into a common kinetic regime. A central task in that endeavor is to find a general
way for getting out of stable attractors in a way that is compatible with the very nature
of the system. This would be simple if we could invert the arrow of time since that
changes attractors into repellers. Of course, the physics of the system can surely not
run backward in time. However, by means of a model of the dynamics, we can make the
controller learn to stabilize the behavior backward instead of forward in time. Applied
to the physical system (that of course is running forward in time) this controller should
on the one hand destabilize FP attractors and on the other hand preserve limit cycle
behaviors (like walking patterns) since oscillations are invariant under time inversion.

4The minimization of the prediction error is also at the basis of more recent approaches on minimizing the
free energy of the sensor process [13, 14, 16, 15]. In Fristons approach, the tendency of stasis is overcome
by assuming additional priors that drive the system to activities.
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Figure 2: The time loop error. The new sensor values are back propagated through
both the self model and the controller to yield the reconstructed previous sensor values.
The difference between reconstructed and true sensor values forms the time-loop error.

Technically, learning the controller backward in time is realized by minimizing the
so called time-loop error (TLE) based on the reconstruction of previous sensor values
from the current ones using the model. The sequence of steps from xt through the world
to xt+1 and back through the model and the controller to xreconstr. is forming a time loop
which gives the method its name. The general scheme is depicted in Fig. 2 and a deeper
theoretical foundation and many practical realizations can be found in [11].

Gradient descending the TLE leads to explicit update rules for the parameters of
the controller. Using our previous setting, we give the rules explicitly in order to get
some first impression of their structure and function. We introduce the column vectors5

ζ = (AG′)−1
ξ , µ =

(
CCT

)−1
ζ , and v = Cµ , as auxiliary quantities, the squashing

function reducing numerical instabilities. The time loop error is

ET LE = vT v = ζ
T 1

CCT ζ . (12)

The gradient descent in controller space yields the explicit rules

∆Ci j = εcµiv j− γiyix j,

∆hi =−γiyi (13)

displaying a noteworthy similarity with Eqs. (8, 9). Indices are running over all sensors
and motors as before, i. e. i = 1,2, . . . ,n and j = 1,2, . . . ,m and we introduced the
channel specific learning rate

γi = 2εcµiζi.

5The matrix inverses have to be understood as pseudo inverses if the normal inverse does not exist.
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These relatively simple update rules define the parameter dynamics of the controller,
the learning of the self model being given by Eq. (7). The rules need some numerical
precautions due to the matrix inverses which are discussed in detail in [11]. Both in HK
and in the present work, learning is not to be understood as the convergence towards a
specific goal. Instead, the learning rates usually are chosen such that the parameter and
system dynamics run on comparable time scales. In the neural network interpretation
we have a fast synaptic dynamics which is constitutive for the behavior of the system.

5.1 Principles of Action
The emergence of quite unexpected but body related modes in systems with completely
unknown physical properties is a general phenomenon homeokinetic learning. This
has been proven in applications with a great variety of machines ranging in complex-
ity from the BARREL to snake and humanoid like artifacts with up to 20 independent
degrees of freedom. Nothing of the specific properties of these systems is made ex-
plicit to these rules. Instead the latter are used with only minor modifications for any
application. The results are even more surprising given the fact that the controller is
extremely simple and, apart from the learning dynamics, has no internal dynamics of
its own.

The peculiarities of the general learning rules has been demonstrated in various
robot examples using both real and simulated robots. Here, let us consider just some
essential points that can easily be understood from the above formulas in order to give
some feeling on the differences to the learning rule presented in this paper. The essen-
tial new feature is that the landscape of the time loop error, Eq. (12), is characterized by
singularities acting as repeller (infinitely repulsive regions) for the gradient flow. This
is a direct result of learning the system backward in time. These repulsive regions are
easily identified. A first class of singularities is given by the zeros of g′ (featuring in ζ ),
i. e. in the saturation regions of the neurons. The effect of this singularity, which leads
to the anti-Hebbian term −2εiyix j in Eq. (13), is to keep the neurons away from the
saturation regime. This is very reasonable since in that region neurons are not sensitive
to their inputs. This singularity is also present in our new rule.

Typical for the landscape based on the TLE is a further repulsive region resulting
from the inverted matrix CCT . The role of this singularity is most immediately seen if
the robot is initialized in the situation (C = 0, h = 0, the least biased one in the sense
explained in Sect. 6.1x) so that the controller does not react to its sensor values at all.
The slightest perturbation will quickly drive the parameters of the controller away from
this unstable fixed point of the combined dynamics so that feedback in the sensorimotor
loop is generated and the robot is quickly driven away from this “do nothing” region.
This is a definite advantage if it is important to get away from that singularity as fast
as possible. In our new rule, the “do nothing” region is not a repeller but an unstable
fixed point. This may be a disadvantage in the bootstrapping process but on the other
hand it allows to start directly with the least biased initialization, which is beneficial if
one wants to make maximum use of the symmetry breaking phenomenon. This paper
presents several examples which were not possible in the HK approach.

Another singularity is produced by the inverse of the self model matrix A that ap-
pears in ζ . That one can also be present in the new approach if δy is calculated not
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by back propagation but by the so called backrojection method. Therefore we consider
this as a more or less technical issue so that we will not discuss it here, see [11] for
details.

Behaviors generated by either the HK or our new rule are inherently contingent
(there is no influence from outside) but by far not arbitrary since the whole bootstrap-
ping process is driven by the specific reactions of the embodied robot to the controller
signals. Thus, it is the body itself which plays the most active part in the emerging
control process so that this phenomenon has also been called body-inspired behavior.

In robotics, one commonly is used to have a specific task which is to be solved
effectively. Embodied AI opens new perspectives in that the embodiment is intended to
help in the process. Homeokinesis gives the robot much more autonomy in that, besides
of minimizing its time loop error, no tasks or goals are formulated. This produces
activities which are completely free of any purpose but, since they are body inspired,
they are the most natural modes, called fundamental modes in this paper, for a given
body. We have demonstrated in numerous examples how this paradigm makes the
robots to unfold their bodily affordances in a playful way, see [11], e. g.

6 Vehicles: behavior as broken symmetry
Let us now apply the new learning rule to some specific examples chosen such that the
characteristic properties of the self-organization process are illustrated. This section
will focus on the TWOWHEELED robot.

6.1 Least biased initialization.
In applications, a first point is about the choice of the initial parameters of the networks
and the initial configuration of the robot. With our specific choice of the controller
network, the initialization with C = 0 seems most natural because this corresponds
to a controller that is completely numb, i. e. deprived of any functionality. Putting
additionally h = 0, we find that all motor neurons send the command yi = 0 to the
controller, independently of any inputs.

Choosing the initialization in the described way has different effects on the initial
pose the robot is taking. For example, in the wheeled robots case this means that all
wheels are held at rest. In robots consisting of several segments tied together by joints,
y = 0 means that all joints are driven towards their center position. We will follow up
this point in the detailed examples of the HEXAPOD and the HUMANOID further below.

The combined system, comprising the physical and the synaptic dynamics, is fully
deterministic. If starting in the least biased initialization the combined system may be
in an unstable fixed point so that we have to add, for a short time interval, a little noise
to the sensors. After switching the noise off, the actual initial condition is fixed. From
this time point on, the further time evolution of the entire system is deterministic, being
fully determined by the values of the sensor vector, the initial pose of the robot and the
values of all parameters of the controller (now already different from zero). This set of
values may be called the behavior code of the robot.
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6.2 Symmetry breaking—a rule of thumb
Before going to present the experiments, let us formulate a simple rule of thumb on
the development of the robot when starting from the least biased condition: in typical
experiments we observe that the behavior of the robot can be described as being active
(caused by the driving term in the learning rule) while conserving as much of the orig-
inal symmetries of the system as possible. This was also formulated as an parsimony
or parsimony of symmetry breaking. Note that symmetries involve not only the geom-
etry of the robots body but also all the symmetries of the physical dynamics. In the
two-wheel robot case the body geometry is described by the invariance against both
left-right and forward-backward transformations. The physical symmetries are based
on the robot being an object in space and time, the physics being invariant against
both translations and rotations of the frame of reference, taking however account of
the physical boundaries (objects, the ground the robot is on). Moreover, there is the
invariance against the inversion of time combined with the inversion of all velocities.

Let us also emphasize that symmetry breaking observed in this scenario is emerging
as a phenomenon “from inside” the deterministic system itself so that we may speak of
a spontaneous symmetry breaking (SSB). We would also like to stress that fundamental
modes are singled out by a maximum degree of symmetry. This may give the concept
of fundamental modes a more solid founding but this still needs some work to be done.
As an additional feature, the breaking of the symmetries can largely be influenced by
external impacts (physical forces in the sense of a desired mode) and/or by choosing
specific sensor combinations that help to organize the symmetry breaking scenario. We
will give an example with the bungee jumper below.

6.3 The autistic vehicle: fundamental modes
We have introduced above the vehicle with the wheel counters as the only sensors. We
have called it autistic because its only contact with the external world is by proprio-
ception. Moreover, the learning starts in the least biased way, so that the symmetry
breaking should follow the principle of parsimony mentioned above. In particular, the
physical system (realized in the simulator by N differential equations, where N = 8 with
the vehicle), is invariant against spatial transformations, i. e. translations or rotations of
the spatial frame of reference. With the constraints given by the (elastic) surface, the
remaining symmetry operations are rotations around the z axis and translations in the
x− y plane. Also, as discussed, the learning rule gives no clue of how symmetries are
to be broken.

We consider now the TWOWHEELED with a two-neuron controller receiving sensor
vector x ∈ R2 representing the wheel velocities and sending its output y ∈ R2 to the
motors. Starting with the least biased initialization, and believing in our rule of thumb,
we expect the robot to start moving after some time6 while trying to conserve as much
of the original symmetries as possible.

6When using low learning rates, this time can be very long so that we often start the robot with an
initialization close to the bifurcation point, choosing C = cI with c close to 1. Contrary to the HUMANOID
and HEXAPOD treated below, in the TWOWHEELED case, no substantial differences in the behaviors were
observed.
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Figure 3: The TWOWHEELED as a 3D physical object. The ground is elastic so that
the wheels are sinking in depending on their load. Left, wheelsize = 1: with the given
elasticity, the robot is lying more or less flat on the ground when driving straight. There
is a strong slip effect when accelerating. Moreover, when moving in a curve, there is an
inclination due to the physical forces making the effective radius of the wheels different,
see the video S2. This is even more pronounced with larger wheel sizes (middle and left,
size = 1.2). These 3D effects make both odometry and the execution of motion plans
very difficult as they involve the full physics of the robot.

However, when using a learning rate ε not too small, the robot is seen to engage in
a sequence of left and right turns combined with motions back and forth along curved
lines, without any regularity to be seen, see Fig. 4, top left panel. Still, we must note
that these trajectories are fully deterministic. Restarting the simulation with exactly
the same parameters C,h and in the same physical state reproduces exactly the same
trajectory however irregular it is. Nevertheless, our rule of thumb obviously is not
valid in this regime as there is no visible footprint of the underlying symmetries—the
invariances against rotations and translations of the physical space.

The situation changes drastically when using smaller learning rates so that the in-
terplay between learning and physical state dynamics is given time to unfold. Fig. 4
is demonstrating a typical behavior of the robot. As the top right panel shows, after
starting, the robot is running through a kind of metastable patterns, converging after
some time toward a large scale CP. The bottom left panel shows the fine structure of
that limit cycle behavior.

In order to discuss this phenomenon, let us take at first the perspective of an external
observer in the sense of Braitenberg. From this external point of view, the robot is
drawing a complex geometrical pattern with a surprisingly high accuracy. In order to
do that, the robot would have to have a detailed plan of the pattern to be drawn. In order
to execute that plan, the robot would need a very accurate system of self-localization
for finding its exact local position and heading direction. This could be done by either
using a compass and a GPS system (which is not available) or by odometry, based on
the measured wheel velocities. However, this is very inaccurate, given that the robot in
the simulation is moving on an elastic ground so that, when accelerating or moving in
a curve, there is an inclination due to the inertia and/or centrifugal forces making the
effective radius of the wheels different, see Fig. 3. On top of that, the odometry would
be very demanding in the computational resources given the required accuracy.
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Figure 4: Deterministic trajectories of the robot in the 2D plane emerging with different
learning rates ε . If learning is fast (ε > 0.01), irregular trajectories are the rule. With
lower rates (here ε = 0.001), after a transient phase of irregular motion through a kind
of metastable attractors, the dynamics is converging toward a limit cycle behavior (top
right and bottom left panel). A first explanation for the emergence of a circular pattern
(CP) is given by using an SO(2) matrix for controlling the robot (bottom right). This
leads to a CP but does not explain the fine structure of the CPs observed under learning.

6.4 Synergy of learning and physical state dynamics
On the other hand, when looking inside the system, none of the above ingredients for
drawing a prescribed pattern with the observed accuracy can be found. Instead, all we
see are the two poor neurons with their universal, low-complexity synaptic dynamics.
Metaphorically, from this point of view, nothing like a concept of space and/or a plan
for drawing a particular pattern can be uncovered. Even more so, it is even impossible
of finding the plan inside the robot. In fact, given the wiring, the emerging patterns are
specific with the concrete embodiment as they emerge by the interplay with the physics
of the system only.

Still, an understanding of the phenomenon is in reach when looking at the structure
of the controller in one of the limit cycle patterns. When taking a snapshot of the
controller matrix C, we discover a nearly perfect SO(2) structure of the C-matrix, see
Fig. 5, with tiny modulations in synchrony with the motions of the robot. Any such
matrix can be written as a rotation of a given vector v by an angle α and a stretching
factor ρ . When using such a matrix in Eq. (5), the robot will either draw a (nearly)
perfect cycle or, as shown in Fig. 4 (bottom right), will generate a circular pattern
similar to the co-learning case but with a very different fine structure. Obviously, the
fine structure of the patterns is produced by the coupling between physical and learning
dynamics so that the rotation matrix does give only a first orientation on the emerging
structures. Instead, as we will see below, both the very nature and the fine structure
depend additionally on the embodiment in an intricate way.

So, from looking inside, there is a coarse explanation of how the robot does it,
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Figure 5: The circular pattern formation is hidden in the dynamics of the controller
parameters as driven by the general learning rule. The C-matrix (left and middle panel) is
seen to be of a nearly perfect SO(2) structure. This reveals another aspect of the general
learning rules—the emerging dimension reduction in the parameter space. Instead of 4
parameters, the SO(2) matrix is described by only one parameter (the rotation angle).
The middle panel displays the interplay with the h dynamics which is seen to be periodic
with a slight bias. Right panel: the two sensor values (wheel velocities).

once it has “understood” so to say, what a rotation matrix is and how it can be used.
However, this does not explain why the learning discovers these special matrices in
the four dimensional matrix space and moreover how to use them in the fine interplay
between the parameter and the (physical) state dynamics.

On a general level, an understanding is given by or rule of thumb: a pattern in
space can only emerge from breaking the spatial symmetries inherent in the physics
of the robot as mentioned above. When trying to make this symmetry breaking as
parsimonious as possible, a circle is nearly perfect: while it has broken the translational
symmetry (the center is a fixed point in space), rotation symmetry (around that center)
is fully conserved. Yet, because of its fine structure, the real patterns emerging in our
learning scenario are not circles, but they are still invariant against rotations about a
definite angle, see in particular the patterns of Fig. 6. This may be seen as a noteworthy
parallel to the hexagonal patterns known from many phenomena in nature. So, the
observed patterns apparently are the ones with a high degree of preserving the spatial
symmetries of the physical system.

There is a more naive argument for the predominance of such regular patterns. We
have seen above that, once the initial condition is fixed (see Sect. 6.1), the trajectory
of the robot is exactly determined for all future by the values of that initialization—its
behavior code. Our point is that a completely irregular trajectory needs infinitely much
information stored in its code. To the contrary, codes of regular trajectories need much
less information so that there are whole sets of values generating one and the same
regular trajectory (in a finite but large time interval) so that the latter are realized with
much higher probability.

6.5 The pattern factory
Further insight into the role of the learning dynamics in the pattern formation can be
gained in a kind of learning on-off scenario: we start with the full learning dynamics,
let a circular pattern, see Fig. 4, develop and put ε = 0 for a while. Most astonishingly,
the robot starts drawing a new pattern of very high geometric regularity resembling
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Figure 6: Pattern spin-off effect in the learning on-off scenario. When in a limit cy-
cle (circular pattern) and temporarily switching learning off, a new stable structure is
emerging. After switching learning on again, the full dynamics is converging back to
the limit cycle. In repetition, this produces a large variety of different structures. Top
left: Pattern with robot for size comparison. However, patterns come on very different
length scales. See video S3 for an example.

only remotely the circular structure it was spinning off. Upon switching on learning
again, the system rapidly returns to the original CP (with a different center in space).
This procedure can be repeated with ever new patterns emerging.

In discussing this pattern spin-off effect, we have to remember that once ε = 0,
both C and h are fixed so that the spin-off pattern is fully determined by the physical
starting state. In a number of experiments we even observed that each parameter set
created in the learning on-off scenario is seen to even support several behaviors, each
with its own basin of attraction. What we want to emphasize is that all these patterns
are off-springs of the CP with behavior codes defined by the snapshots of the parameter
dynamics. So, actually, we may say that, once in (or close to) the limit cycle attractor,
the learning (parameter dynamics) produces a whole sequence of behavior codes for
potential behaviors.

6.6 Patterns as expressions of embodiment
Let’s now have a closer look at the role of the embodiment. As already explained with
Fig. 3, the TWOWHEELED must be considered as a full 3D system moving on an elastic
ground. Let’s consider a few experiments demonstrating how sensitively the emerging
behaviors depend on the concrete realization of the robot’s body.

As explained with Fig. 3, the physics of the robot already changes substantially
with changing the wheel size. As demonstrated with the left panel of Fig. 7, changing
the wheel size from 1 to 1.1 leads to a new pattern—instead of a circular structure we
get convergence toward an aligned pattern structure, i. e. a wiggly structure organized
along a line. On the general level we may argue that now it is not the rotation symmetry
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Figure 7: The role of embodiment. Left panel: wheel size 1.1, ε = .001 and cInit=1.2.
After a very irregular initial phase, the robot enters an aligned wiggly pattern, running
at first to the right and then back toward the left lower corner. Middle: Wheel size 1.15.
Right: asymmetry of 1.5:1.75 in the wheel-trunk system with wheel size 1.2. The pattern
is less regular.

that is partially conserved, but the translational one. In fact, a line is invariant against
translations but not rotations in the plane.

As the middle panel of Fig. 7 shows, this effect is very sensitive to the choice of
the wheel size—increasing the size to 1.15 produces a circular pattern again but with
a very different fine structure. The emerging patterns are also very sensitive to the
forward-backward asymmetry of the wheel-trunk system, see right panel of Fig. 7 for
an example. Depending on that degree of asymmetry many different patterns can be
observed, mostly circular ones but with widely varying fine structure.

6.7 Modes
We see that the hidden symmetries of the physical system can in a very intricate way
propagate into the combined state-parameter dynamics of the developing system to
produce large-scale effects in space and time7. When looking at the limit cycle patterns
(the circular structures), we see a very complicated periodic or quasi-periodic structure
interweaving the physics and the learning dynamics in an irreducible way. This synergy
between state and parameter dynamics is breaking down immediately as soon as we
freeze the learning dynamics, with a new pattern emerging as explained above.

We may consider each emerging limit-cycle dynamics as a mode of the system.
These are of different nature, either with the parameters fixed or driven by the learning
dynamics. In the no-learning case, there is an immediate parallel to Braitenberg’s
idea of interchanging perspectives: looking from inside, we see a vehicle with a fixed
wiring of sensors to motors, now also with cross connections and some bias for the
neurons (active wires). This extremely simple electro-mechanical system is able of
drawing very complex geometrical patterns like the ones shown in Fig. 6. Looking from

7This effect seems to have been observed already in the homeokinesis (HK) approach [11] with the sphere
that adapts its rolling motion to the geometry of the basin. Here, we have a more subtle effect, given that
there is no formative external geometry, the only link between the internal world (learning dynamics) and
outer world (physics) is by the wheel velocities which give information about the behavior in space only in
an indirect way and, even in the simulations, with much restricted accuracy. It is only by this window into
the outer world by which physical effects, mainly the inertia due to the mass of the body and the wheels, take
influence on the behavior generation.
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outside, even if the self-localization problem was solved, the system seems to follow
a very complex plan for drawing such highly regular geometric patterns. But also in
the learning case, the Braitenberg perspectives are still appropriate. If considering the
parameter dynamics as the dynamics of some internal state variables, we still have a
very simple controller exciting those very complex modes.

Yet another perspective is suggested by the autism metaphor: we could say that, by
the learning dynamics, the robot is somehow taking note of its being in space (creating
patterns) but this without any internal reflection of that fact. Metaphorically, we may
say that the robot does not know what it does but it does this with high accuracy and
dedication, discovering by proprioception alone a specific way of being in space and
time.

The observed limit cycle attractors, both with and without learning, are examples
of the many modes this specific brain-body system is able of developing. We are free
to call each of them a fundamental/normal mode but we also may single out the co-
learning mode as the most fundamental one as it is the host of all the spin-off modes.
This is the attitude taken in this paper.

7 The looping HUMANOID

Let us now continue our considerations with a more complex system, the HUMANOID
introduced above. The results in Sect. 3 have demonstrated that under certain condi-
tions this system is particularly amenable to fundamental modes. The observed modes
may be attributed to a specific form of broken symmetries under minimalistic con-
trol. Using the HUMANOID we are now going to look a little deeper into the scenario
of spontaneous symmetry breaking in systems of higher complexity than that of the
TWOWHEELED.

7.1 High symmetry motion patterns
As in the TWOWHEELED case we start with the least biased initialization, wondering
what the emerging symmetry breaking scenario will look like. We use the bungee
scenario with the same physical setting as in Sect. 3. After letting the robot fall, we
observe again the vertical oscillations around the equilibrium point but after a while
(several minutes real time with ε = .001) the robot develops a specific motion pattern
looking like a swimming motion, see Fig. 8 and video S4.

On a general level, the observed pattern illustrates very clearly the rule of thumb:
the robot is being active but the original symmetries of the physical system are con-
served as much as possible. This is obvious for the geometrical left-right symmetry but
we may also argue that the original symmetries of the physical system are still dom-
inating the behavior. In the least biased initialization, there is an invariance against
inversion of joint angles8. Breaking the symmetry means to define for each joint angle
where to go by what velocity. Without any external clue, the most parsimonious solu-
tion would be to change all the joint angles with the same velocity, generating a phase

8In order to make this explicit, think of a linearization of the system around its equilibrium point defined
by the initialization. Details will be given elsewhere.
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Figure 8: One period of an emerging motion pattern in the bungee scenario. The pattern
is an example of minimal symmetry breaking.

Figure 9: One period of an emerging periodic motion pattern with the trunk fixed and
an additional back joint giving the robot more freedom of motion. Coherence is now
caused not only by the original symmetries but also by the physical cross-talk becoming
“louder” with increasing activity of the robot.

and frequency locked dynamics of the mechanical system. Actually, this is what we
observe at least in the early phases of the behavioral self-organization.

Looking more into the details, we see a qualitative difference to the running motion
pattern (RMP) of Sect. 3 with its in-phase and anti-phase signature. As all other con-
ditions are equivalent, this must be caused by the different initializations. In the RMP,
the strong negative feed-back strength of the system was discussed responsible for the
specifics of the RMP, see Sect. 3.2. In this setting, we start with C = 0 and h = 0,
the least biased initialization, everything being determined by the learning, starting
with the initial perturbations introduced by the physics. In the beginning, the vertical
oscillations introduce tiny changes in the joint angles due to inertia effects not fully
counteracted by the motors. These are acting on all joints simultaneously as they are
caused by the motions of the center of gravity. Once started, these perturbations are
self-amplifying which may explain why all angles are changing simultaneously. Later
on, there may also be some physical cross-talk as described with the RMP in Sect. 3.
This is now possible not only in the joints of a single limb but may propagate also
between the upper and the lower part of the body and between the arms and legs.

The cross-talk phenomenon shows that the symmetry breaking mechanism is very
sensitive to the concrete morphology of the robot. By way of example, we use an
experiment where the robot was given an additional back joint, giving the robot more
freedom in movements of its lower part. Moreover, we fixed the trunk so that there
is no starting perturbation by the vertical oscillations as in the bungee setting. Still,
there is a physical starting signal given by the difference of the joint angles in the
initial configurations (all equal to zero) and their equilibrium position (different due to
gravity). Again, after a transient initial phase, we observe the emergence of a collective
mode involving all degrees of freedom of the lower part, see Fig. 9. We guess that this
collective motion is more a result of the physical cross-talk than the fingerprint of the
initial symmetries, but we still have to study this in more detail.
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Figure 10: With a sensor measuring the rotation velocity of the trunk around its yaw
axis, the robot synchronizes its internal motions with the trunk rotation. After a while,
the robot learns rotating its entire body around the trunk axis, eventually executing a
loop.

7.2 Exterioception may guide self-organization
Up to now we were using only proprioceptive sensors so that the orientation of the
bungee jumper in space was came into play only in a very indirect way, for instance by
the gravity forces providing additional loads on the joint motors. Let us now include a
sensor that is orientation sensitive. In a first experiment we use a sensor that measures
the rotation velocity of the trunk around its yaw axis (the one running through both
the shoulders). This velocity is simply taken as an additional component of the sensor
vector x. We let the system run with the learning algorithm of Eq. (8) just as in the
previous case.

Astonishingly, the emerging behavior is completely different from the previous
one. We observe now already after a short time that the robot tries rotational motions
around that axis (known to him only by one sensor value without any knowledge what
this sensor is measuring). In the video S 5, the amplitude of these rotational motions
is seen to increase steadily until the robot is looping, see Fig. 10. After that it is in a
physically less stable state (by loss of symmetry in its motion pattern) so that it needs
some time until the play may begin again.

Again, we can recognize the rule of thumb here. In fact, the motion still—while
being of quite some variability—reflects the original symmetries of the physical system
in its least biased initialization. In particular, the looping is performed only if the robot
is keeping in a motion regime where the left-right symmetry with respect to the yaw
axis is nearly perfect, see the video S 5.

7.3 Starting in a mode
What happens if we start with the above minimalistic controller, i.e. use the initial-
ization C = cI with c < −1? As video S 6 shows, the learning enhances the running
motion pattern (RMP) in the course of time more and more by steadily increasing the
step length until the whole motion pattern gets unstable after a long time. However, as
video S 6 also shows, the stability of the RMP is holding up to a very large step length.
This video also shows that the RMP is entirely self-generated. When the bungee force
is reduced so that the robot reaches ground, the RMP decays but is resumed rapidly if
the conditions of its existence (hanging in air) are reestablished.
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8 The HEXAPOD

Let us now follow the trace of symmetry breaking a little further down the road with a
robot of comparable complexity as the HUMANOID but with a different symmetry and
interaction with the environment: the HEXAPOD. We choose this robot since it has not
been treated in earlier work on HK [11] and because it will be seen to reveal symmetry
breaking phenomena in a particular clear way. The robot consists of a trunk with two
whiskers (passive joints), and six legs, each one consisting of a shoulder with two joints
and a knee with a single joint. Each of the 18 joints is activated by a motor and contains
a sensor that is measuring the true joint angle. The effective torques acting on the joint
axes are determined by a PID controller so that there is an elastic reaction of the robot
to the nominal joint positions y ∈ R18, similar as in a system controlled by muscles.

In a typical experiment, the HEXAPOD is falling down from a starting position a
little above the ground. With the least biased initialization, y = 0 in the beginning so
that all joints are in their center positions. When hitting the ground, the robot gets into a
damped vertical oscillation due to the elasticity of the joint-motor system. This is suffi-
cient for providing an initial perturbation that is further amplified by the bootstrapping
mechanism as sketched in Sect. 6.

8.1 Modes
What can we expect to happen? Depending on the concrete situation (for instance
the meta learning parameter, in particular ε) different behaviors may emerge. In most
cases the robot starts with a swaying and rolling motion pattern, see Fig. 11 and video
S 7. We may claim again, that this is in agreement with our rule of thumb since in this

Figure 11: Initially, the robot develops a swaying motion pattern, as if it is very actively
trying to move the legs in a coherent way while keeping ground contact.

motion the joint angles are changing with a pretty high degree of coherence as allowed
by the (soft) physical constraints enforced by the ground contacts.

More interesting behaviors emerge after some time. Most exciting is the emergence
of a jumping behavior as a stable phenomenon, see Fig. 12 and the corresponding video
S 8 and S 9. In these jumping patterns the robot is seen to be very active but still with

Figure 12: Emerging jumping motion pattern.

a large coherence in the joint angles as suggested by our rule of thumb. There is still a
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surprise when looking at the parameters of the controller. In the TWOWHEELED case
we observed that the C-matrix displays a definite structure, it developed into a SO(2)
matrix which is prominent among all R2×R2 matrices in forming a group. This is like
the symmetries of the physical space leaving a fingerprint since the physical space in
2D is invariant against all transformations by the group of SO(2) matrices.

Of course, we can not expect such a clear result in the case of our HEXAPOD be-
cause of the much higher dimensionality of the physical space and the fact that the robot
is also interacting with the ground. Yet, a look at the C-matrix is the more surprising.
As Fig. 13 shows, the emerging sensor-to-motor coupling matrix is highly structured,

Figure 13: The parameters of the controller (C-matrix, upper right panel) and the model
(A-matrix). In the C-matrix, the upper left 12× 12 block displays the matrix elements
of the shoulder couplings, each row i representing the coupling strength of the 12 angle
sensors into the ith motor neuron. Reading each row from the diagonal element to the
right and wrapping the reading back to the diagonal, one sees that each shoulder follows
essentially the same strategy. A related understanding of the control strategy holds for
the knee joints, see the lower right sub-matrix.

reflecting the original symmetries to an amazingly high degree. Both the shoulders and
the knees are seen to follow essentially the same strategy for moving the body. This
is in agreement with our rule of thumb since this collective strategy allows the body
to be moving, even to jump, but with a maximum degree of coherence between the
individual constituents of the body.

Moreover, we also see from that figure the whole-body nature of the behavior. The
periodic jumping pattern are not created by using a central pattern generator producing
a master signal that is sent with the necessary phase corrections to the individual mo-
tors. Instead, the motion of each body part is generated by combining both excitatory
and inhibitory signals from the sensors of all joints in a systematic manner. This is a
new control strategy for generating jumping (and, hopefully, also walking like) patterns
emerging from simply applying the general learning rule to the physical system.

8.2 Perspectives for guidance and reinforcement learning
Important is also the observation that, by including exterioceptive sensors, the develop-
ment of the modes can be influenced and driven into desired directions. For instance,
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Figure 14: Jumping motion pattern driven by rewarding the forward direction.

as our experiments show (to be presented in detail in a later paper), the jumping height
can be increased by simply including a sensor measuring the vertical velocity of the
robot trunk. The effect can be increased if, like in reinforcement learning, the param-
eter updates are weighted according to the agreement with the reward. For instance,
by using the forward velocity of the robot as a reward, we can guide the SO process
towards jumping into the forward direction, see Fig. 14 and video S 10 as an example.

There are many more interesting phenomena observed with that kind of robots
but we are not going into more details here. We think that the few examples given
may serve as an outline for the bunch of phenomena emerging from SSB under the
general learning rule, given a convenient initialization and some patience for doing the
experiments.

9 Concluding remarks
This paper tried to answer essentially two questions. The first question is about how
to organize self-organization, asking how can we find intrinsic mechanisms that make
a system able to self-organize. The answer was given by the unsupervised learning
rule (ULR), see Eqs. (8, 9), which fulfills the main criterion for a genuine SO: it is
universal in the sense that the only information necessary about the system is given
by the number of sensors and that of motor neurons, any further information being
acquired by the co-learning self-model in a bootstrapping process.

The second bunch of questions we want to answer in this paper is suggested by
exactly that bootstrapping scenario: with nothing specified from outside, what can we
expect the learning system to do. What will the emerging behaviors look like and what
will the relation to the embodiment of the robot be? How and to what extend are the
emerging behaviors determined by the embodiment; and can we find systematic criteria
for those behaviors?

Several answers could be given by looking into the role of the underlying symme-
tries of the system in space and time. The invariance of the physical space against sym-
metry operations (like translations and rotations) induces corresponding invariances
modified by the constraints (like contact with the ground). The point then is that, while
driving the system towards instability, the ULR is preserving these symmetries. As a
result, the evolution of the system in the learning process is realized by a sequence of
spontaneous symmetry breaking following—similar to what we know from nature—a
kind of parsimony principle. This lead to our rule of thumb: the emerging behaviors
in physical systems (robots) driven by our ULR are qualified by a high activity while
preserving as much of the underlying symmetries as possible.

This rule brings the embodiment to the foreground. The symmetries are embodi-
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ment specific and, moreover, breaking the symmetries is a process that is related to the
very physics of the system. This was demonstrated by a number of examples. The first
and probably the most surprising one was given by the TWOWHEELED robot. Con-
trolled by two neurons with a fast synaptic dynamics given by the ULR, the system
in many cases was converging towards a limit cycle behavior with the trajectories of
the robot forming nearly perfect geometric patterns. The emerging geometric patterns
where seen to depend on the embodiment (like the wheel size) in a very intricate and
sensitive way. Interestingly, the limit cycle features as a pattern factory: in a learning
on-off scenario it was seen to produce a great variety of further patterns, spinning off
the limit cycle if the learning is turned down (called the pattern spin-off effect). It
would be very interesting to ground this phenomenon in dynamical system theory.

Similar effects of symmetry breaking were obtained by the examples of the HU-
MANOID and the HEXAPOD. In the latter case, we also observed the excitation of
body related, high activity modes with a high degree of coherence between the body
parts. In particular, with the HEXAPOD, we observed a jumping mode demonstrating
our rule of thumb: emerging behaviors are qualified by high activity while preserving
the underlying symmetries of the system as far as possible (the principle of parsimony
in spontaneous symmetry breaking). In future work we will be looking for a parallel of
the pattern spin-off effect, hoping to thereby uncover a kind of pattern factory for these
more complex systems, too.

These results are a step forward as compared to the state of the art. Previous work
in self-organizing robot behavior was either restricted to small, easy to analyze sys-
tems or produced—like with the principle of homeokinesis—behaviors which looked
interesting and were often completely surprising [11], as it should be. However, by the
same token, it was often not clear what the robot actually is doing. With the concept
of behaviors as broken symmetries, this is now (a little) different. The principles and
examples given in this paper—in particular the emergence of fundamental modes, the
TWOWHEELED as a pattern factory, the looping behavior of the HUMANOID, and last
but not least the jumping modes of the HEXAPOD—may help us to better understand
and exploit the synergy between embodiment and SO of autonomous robots.
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