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Abstract

Self-organization—ubiquitous in nature—is a major chal-
lenge for both artificial life and modern robotics offering in-
triguing perspectives for practical applications utilized so far
only incipiently. There is some progress, though, in formulat-
ing general objective functions for driving systems into self-
organization (SO). Based on general principles like informa-
tion maximization, these approaches are domain invariant and
free of arbitrariness. However, and this seems to be a major
source of concerns, if nothing is specified from outside, will
SO simply make the robot an arbitrary subject that is com-
pletely unpredictable in its behaviors and thus rather a thread
than a hope. The aim of this paper is to show that this attitude
is not justified. Instead, we develop an understanding of what
happens if the system is self-organizing, what the role of the
embodiment is and how we can find clues for predicting and
shaping the behavior patterns emerging in a genuine SO sce-
nario. The approach is based on a new unsupervised learning
rule staging two antagonistic activities—driving systems to-
wards instability while preserving the physical symmetries of
the system as much as possible. This leads to spontaneous
symmetry breaking, the leading phenomenon of SO known
from nature that has been overlooked by the robotics com-
munity so far. It is shown by a number of examples that
the unsupervised learning rule induces an amazing variety of
behaviors—patterns in space and time that can be interpreted
as broken symmetries.

Introduction

Self-organization (SO) is a ubiquitous phenomenon in na-
ture and a promising challenge to the creation of artificial
autonomous systems. In particular, in embodied artificial
intelligence, SO may provide an essential progress in the
realization of embodied control. Viewing a robot in its en-
vironment as a complex dynamical system, SO can help to
let highly coordinated and low dimensional modes emerge
in the coupled system of brain, body and environment. In
this way, instead of being programmed for solving a spe-
cific task, the robot may find out by itself about its bodily
affordances and then, in a second step, one may focus on the
exploitation of the emerging motion patterns—by guiding
the SO process into the directions of potential benefits.
While there are many approaches toward structural SO,
in particular self-assembly, the SO of behavior still is con-

sidered more as wishful thinking than as a true and system-
atic approach toward autonomy. A principled way toward
the SO of behavior faces essentially two challenges. One is
how to organize a robotic system in such a way that it starts
to self-organize its behavior. Actually, the situation in that
point is not too bad. There are several approaches based
on formulating objective functions (OF) for SO. In recent
years, several such OFs have been proposed, ranging from
the maximization of predictive information Ay et al. (2008);
Der et al. (2008); Ay et al. (2012); Martius et al. (2013) or
empowerment Klyubin et al. (2005, 2007); Anthony et al.
(2009); Jung et al. (2012), to the minimization of free en-
ergy Friston and Stephan (2007); Friston (2012, 2010) or the
so called time-loop error in the homeokinesis approach Der
(2001); Der and Liebscher (2002); Der and Martius (2012),
see also Prokopenko (2008, 2009) for more details on how to
organize SO. Given an objective function, the optimization
process can be translated into a learning rule that is driving
the SO process.

These OFs all fulfill the prerequisite of a principled ap-
proach to SO: as they are formulated in a domain invariant
way, they do not determine specific directions for the au-
tonomous development, avoiding to put in what one actually
wants to get out. But this achievement creates a dilemma
which is the second, more serious challenge to SO. In fact,
and this seems to be the argument, if nothing is specified
from outside, will SO simply make the robot an arbitrary
subject that is completely unpredictable in its behaviors and
thus rather a thread than a hope. The aim of this paper is
to show that this attitude is not justified. Instead, we will
develop an understanding of what happens if the system is
self-organizing, what the role of the embodiment is and how
we can find clues for predicting and shaping the behavior
patterns emerging in a genuine SO scenario.

In this paper we study how a self-organizing approach
to robot control can break symmetries of the robot-envi-
ronment system such that structured behavior emerges. Our
approach is based on a new learning rule, see Der (2013), ap-
plied to two robotic systems. By these examples, we want to
make the reader aware of the phenomenon of spontaneous



symmetry breaking that is in our opinion instrumental for
understanding how SO can be effective in robotic systems.
We think that the robotic community so far has overlooked
the importance and substance of that phenomenon. It is one
aim of this paper to contribute to the dissemination of this
prospective ingredient for modern embodied robotics, see
also Pfeifer and Bongard (2006); Pfeifer et al. (2007).

This paper is organized as follows: The next section
describes the control framework which is the basis for
the definition of the unsupervised learning rule in the fol-
lowing section. Then we present the first robotic sce-
nario in section “Vehicles: behavior as broken symmetry”
with examples of behaviors from sparse symmetry brak-
ing events. We formulate a “rule of thumb” for self-
organizing behavior from symmetry breaking. It follows
the section “The HEXAPOD” in which we study the emer-
gent behavioral modes and control structures using a six-
legged robot. Finally we conclude with a discussion. Sup-
plementary material, especially videos, are available at
http://playfulmachines.com/ECAL2013.

Control Framework

Fundamental to our approach is the closed loop control
setup. The controller of the robot is given by a one layer
feed-forward neural network transforming sensor values = €
R™ into motor values y € R™ as

y=K(z,C,h) =g (Cx+h) (1)

where C' and h are the parameters (synaptic strengths and
bias values, respectively) and g;(z) = tanh(z;) is the sig-
moidal activation function. The translation between the ex-
ternal and the internal world can be done by a forward model
predicting future sensor values on the basis of the current
sensor and motor values. Here we use a linear network:

Te1 = O (T, Yr, ) + &1 = Aye + Sze + b+ § 41

where ¢ is the prediction error and the parametrized func-
tion ¢ : R™ x R™ — R" is the predictor with the parameter
matrices A and S, and the parameter vector b. The forward
model can be adapted on-line by a supervised gradient pro-
cedure to minimize the prediction error as

AA=néy", AS=néx’, Ab=nté. ()

In the applications, the learning rate 77 may not be small such
that the low complexity of the model is compensated by a
fast adaptation process. It is one message of this paper that,
due to the strong interplay with the embodiment, these very
simple control structures can produce amazingly complex
behaviors.

One-Dimensional Example

Let us consider a wheeled robot on a rail with a single mo-
tor and a single wheel-counter measuring the wheel velocity.

Connecting the simple controller given by equation (1) and
interpreting the motor values as target velocities we can an-
alyze the dynamical properties of the system. Let us first
consider h = 0. For C' < 1 there exists only one fixed point
for z = 0, corresponding to the standing robot whereas for
C > 1 there are two fixed points one for forward and the
other one for backward driving. The system is fully sym-
metric in this respect assuming that also the morphology is
perfectly forward-backward symmetric. More formally the
system is invariant against inversion of the z-axis. For b # 0
there is an asymmetry in the bifurcation structure, which we
will not discuss further, see Der and Martius (2012) for de-
tails.

At this simple example we can understand how symme-
tries can be broken by noise. Let the controller be given by
C = 0, h = 0, such that the robot is in total rest. When we
now increase C' to a value larger than 1 we cross the bifur-
cation point and the resting state becomes unstable and the
perturbations by e. g. noise decide to which fixed point the
system goes.

Unsupervised learning for self-organization

In recent work, the so called predictive information (PI) was
introduced as a general objective function for SO (Ay et al.,
2008, 2012; Zahedi et al., 2010). In Martius et al. (2013),
a modification of the PI, the so-called time-local predic-
tive information (TiPI) was introduce for better coping with
the problem of non-stationarity in continually learning sys-
tems. By maximizing the TiPI, a general learning rule for
the synaptic strengths of a neural controller network was de-
rived. Different from infomax principles derived so far, the
method interrelates the principle formulated at the level of
behaviors directly down to the synaptic level.

In Der (2013), starting from the learning rule given in
Martius et al. (2013), a new rule was presented. Compared
to the TiPI, this new rule was shown to drive the system to-
ward self-organization in a more sensitive way, giving rise
to a rich scenario of spontaneous symmetry breaking. This
was argued to open ways to new classes of self-organized
behavior. A discussion will be given below.

The rule is written as (all quantities are at time t)

1
gACij = 0yidx; — ViyiT; 3)
1
gAhi = =il “4)
where dx; is the prediction error based on time ¢ — 1
Sy = x4 — ¢ (T4-1,Yt—1)

or some other perturbation quantity’. 8y, is defined in terms

'The new rule is not restricted to using dx as the prediction er-
ror. Instead we are free to consider dx as any convenient change
in or perturbation of the sensor dynamics. In the experiments de-
scribed below we used the change of the sensor values in one time
step.



of the world model as

5% = JT5$t+1 (5)
where
_ 09 (z,y)
J = ay

is the Jacobian matrix of the forward model expressing the
sensitivity of its output on the input y. In our linear model,
we simply have J = A.

Moreover, -y; is a neuron specific learning rate defined as

Vi = 200y, 62; (6)

where « is an empirical quantity controlling the sensitivity
with @ > 1, and 6z = Cdz is the change in the postsynaptic
potential caused by dz.

Discussion of the learning rule: self-induced
symmetry breaking

The specific form of the learning rule allows for a very basic
interpretation. Let us start with the last term ~;y;x; con-
tributing to AC;; which is easily recognized as a Hebbian
term since it is the product of the input z; into the synapse
C;; and the activation y; of neuron 7. As such it would
strengthen all paths in the SM loop for which there is a
strong output of the motor neuron combined with a strong
response from the outside world as reported by the sensor
value x;. This would drive the neurons into saturation. How-
ever, with the negative sign (and v; > 0, in standard situa-
tions), the term actually is anti-Hebbian, counteracting the
saturation of the neurons.

The first contribution, dy;0x; is Hebbian again, formu-
lated, however, not in the activations itself but in their devi-
ations from the predicted values as generated by the model.
Given the relation between dy; and 6z, 1, see equation (5),
AC;y; is strengthened if there is a strong correlation be-
tween dx; ; and the components of dx;1 being fed by dy: ;.
Roughly speaking, in that way the first term in the learning
rule tries to increase the propagation of perturbations §z,
driving the system towards instability. Here we can draw
a parallel to homeokinetic learning (Der and Martius, 2012),
where we also have two antagonistic terms which together
should drive the system towards an exploratory behavior.
The structure of the learning rules are similar but differ in
details, as discussed below.

In the bifurcation scenario discussed above, the symmetry
breaking was induced by changing the controller parameter
manually. With the unsupervised learning rule, we have a
self-referential system, a dynamical system that changes its
parameters by itself, see also Der and Martius (2012). The
decisive point in this scenario is the fact that (i) the learn-
ing rule does not introduce explicitly any violations of sym-
metries of the physical system it is applied to, but that (ii)
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Figure 1: The TWOWHEELED as a 3D physical object. The
motor values are interpreted as wheel velocities, however
the simulated motors have a maximal force. The ground is
elastic so that the wheels sink into the ground depending on
their load. Additionally there is friction and slip. The sen-
sors measure the actual wheel rotation velocity. (A,B) wheel
size 1: the robot is lying more or less flat on the ground
when driving straight. When moving in a curve, there is an
inclination due to the physical forces making the effective
radius of the wheels different, see the video S1. Note the
wheels are about 2% off center, so the robot is not fully for-
ward/backward symmetric. (C) Wheel size of 1.2 the body
can tilt to the front and back. These 3D effects would make
both odometry and the execution of motion plans very diffi-
cult as they involve the full physics of the robot.

the learning drives the physical dynamics towards instabil-
ity, eventually causing a spontaneous breaking of existing
symmetries.

To give an example: consider a hexapod robot (see
e. g. Figure 7 below) where the parameters C;; represent the
couplings between the sensors and the motors. Intuitively
the = and dy contain some information of the current mode
of behavior, that is not already modeled perfectly by the for-
ward model. Combined in the driving term the learning rule
will amplify a latent (easy to excite) mode of behavior.

Vehicles: behavior as broken symmetry

Let us now apply the new learning rule to the specific ex-
ample of a TWOWHEELED robot (Figure 1) such that the
characteristic properties of the self-organization process are
illustrated. For the simulations the LPZROBOTS simula-
tor (Martius et al., 2010) was used.

Least biased initialization

In applications, a first point is about the choice of the initial
parameters of the networks and the initial configuration of
the robot. With our specific choice of the controller net-
work, the initialization with C = 0 seems most natural
because this corresponds to a controller that is completely
numb, i.e. deprived of any functionality. Putting addition-
ally h = 0, we find that all motor neurons send the command
y; = 0 to the motors, independently of any inputs.
Choosing the initialization in the described way has dif-
ferent effects on the initial pose the robot is taking. For
example, in the TWOWHEELED case this means that all
wheels are held at rest (velocity control). In robots with



joint-position control, y = 0 means that all joints are driven
towards their center position.

The combined system, comprising the physical and the
synaptic dynamics, is fully deterministic. If starting in the
least biased initialization the combined system may be in
an unstable fixed point. We can either add small noise to
the sensors for a short time interval or position the robot ini-
tially such that sufficient perturbation occur. Without further
noise, the actual initial condition is fixed and the time evo-
lution of the entire system is deterministic.

Symmetry breaking—a rule of thumb

Before going on to present the experiments, let us formu-
late a simple rule of thumb on the development of the robot
when starting from the least biased condition: in typical
experiments we observe that the behavior of the robot can
be described as being active (caused by the driving term
in the learning rule (dy;0x;)) while conserving as much of
the original symmetries of the system as possible. When
only few of the symmetries are broken we call it the parsi-
mony (or economy) of symmetry breaking. Note that sym-
metries involve not only the geometry of the robots body
but also all the symmetries of the physical dynamics. In
the two-wheel robot case the body geometry is described by
left-right and forward-backward symmetries. The physical
symmetries are based on the robot being an object in space
and time, the physics being invariant against both transla-
tions and rotations of the frame of reference, taking how-
ever account of the physical boundaries (objects, walls, and
ground). To give an example: If the robot drives in a straight
line back and forth, the rotational symmetry of the space is
broken, whereas the forward-backward, left-right symme-
tries are conserved. However, if the robot drives in a circle
the rotational symmetry is conserved and the others are bro-
ken. So a ’good’ behavior in the sense of parsimoniously
broken symmetries would be driven in a circular pattern with
both forward and backward driving.

Let us also emphasize that symmetry breaking observed
in this scenario is emerging as a phenomenon “from in-
side” the deterministic system itself so that we may speak of
a spontaneous symmetry breaking (SSB). As an additional
feature, the breaking of the symmetries can largely be influ-
enced by external impacts (physical forces in the sense of a
desired mode) and/or by choosing specific sensor combina-
tions that help to organize the symmetry breaking scenario.
We will give an example with the HEXAPOD further below.

Results

The learning starts in the least biased way, so that the sym-
metry breaking should follow the principle of parsimony
mentioned above. In particular, the physical system is invari-
ant against spatial transformations, i. e. translations or rota-
tions of the spatial frame of reference. With the constraints
given by the (elastic) surface, the remaining symmetry oper-

Figure 2: Deterministic trajectories of the robot in the
ground plane emerging with different learning rates . If
learning is fast (¢ > 0.01), irregular trajectories occur (A).
With lower rates (here ¢ = 0.001), after a transient phase
of irregular motion through metastable attractors (B), the
dynamics is converging toward a limit cycle behavior (C),
called the master cycle below. The width of the robot is dis-
played by the small scale-line at the bottom. See also video
S2. Parameters: o = 3.

ations are rotations around the z axis and translations in the
z — y plane. Remember that the learning rule gives no clue
of how symmetries are to be broken.

When using the controller (equation (1) with the learn-
ing dynamics given by equations (3) and (4) (and fixed for-
ward model with A = I[,S = 0,b = 0, for simplicity),
we expect the robot to start moving after some time? while
trying to conserve as much of the original symmetries as
possible. However, when using a learning rate £ above a
certain value, the robot is seen to engage in a sequence of
left and right turns combined with motions back and forth
along curved lines, without any regularity to be seen, see
Figure 2(A). Still, note that these trajectories are fully deter-
ministic. Nevertheless, our rule of thumb obviously is not
valid in this regime as there is no visible footprint of the un-
derlying symmetries—the invariances against rotations and
translations of the physical space.

The situation changes drastically when using smaller
learning rates so that the interplay between learning and
physical state dynamics is given time to unfold. Fig-
ure 2(B,C) is demonstrating a typical behavior of the robot.
After starting, the robot is running through a kind of
metastable patterns converging after some time toward a

2When using low learning rates, this time can be very long so
that we often start the robot with an initialization close to the bifur-
cation point, choosing C' = ¢l with ¢ close to 1. Contrary to the
HEXAPOD treated below, in the TWOWHEELED case, no substan-
tial differences in the behaviors were observed.
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Figure 3: The circular pattern formation (Figure 2(C)) is hid-
den in the dynamics of the controller parameters as driven by
the general learning rule. The C'-matrix (A) is seen to be of a
nearly perfect SO(2) structure (rotation matrix), which can
be described by a single rotation angle and a scaling, so in-
stead of four parameters there are only two required. The h
dynamics is seen to be periodic with a slight bias. (B) the
two sensor values (wheel velocities).

Figure 4: Patterns for frozen controller parameters occurring
along the master cycle, Figure 2(C). Depicted is a selection
of such patterns from parameter snapshots in one period of
the state-parameter dynamics (about 200 time steps in Fig-
ure 3). If the learning is switched on again, the full dynamics
is converging back to the master cycle.

large scale circular pattern (CP).

The parameters of the controller during the CP (Fig-
ure 2(C)) are not constant but run themselves through a limit
cycle as displayed in Figure 3. This is an immediate conse-
quence of the close and persistent coupling between learn-
ing and physical dynamics. What happens if we keep them
fixed at any time? The answer is quite astonishing: a vari-
ety of different patterns emerges, as displayed in Figure 4.
This also illustrates that the parameter dynamics within the
limit cycle is actually important for the particular pattern.
The former can be seen as a transient along the many stable
patterns with fixed parameters. Upon switching on learning
again, the system rapidly returns to the original CP (with a
different spatial position). This so called pattern spin-off ef-
fect was for the first time reported in Der (2013), this paper
presents additional results demonstrating the richness of that
phenomenon.

At present we do not have a complete microscopic un-

Figure 5: The emerging patterns also depend sensitively on
the learning parameters. The figure shows the emerging
patterns with changing o parameter (from left to right) as
a=1.0,1.3,1.9,2.0.

Figure 6: The role of embodiment. (A) Wheel size 1.1 (de-
fault 1.0). After a very irregular initial phase, the robot en-
ters an aligned wiggly pattern, running at first to the right
and then back toward the left lower corner. (B) Wheel size
1.125 leads to a circular pattern again. Parameter: ¢ = .001,
a=3.

derstanding of the effects. Still, at the level of phenomena,
there is a number of observations. One is that the very na-
ture of the emerging patterns depends in a most sensitive
and intricate way on both the embodiment and the learning
dynamics. For instance, by varying the so called sensitivity
parameter « (equation (6)) of the learning rule we obtain a
set of quite different CPs as shown in Figure 5.

Alternatively, we may change the embodiment and ob-
tain another class of behaviors. One option is to increase
the wheel size that causes the trunk of the robot to tilt more
when accelerating, see Figure 1. Two exemplifying trajec-
tories are presented in Figure 6. For certain wheel sizes we
may get also linear patterns, as they are predominant with
a fully forward/backward symmetric robot. On the general
level we may argue that for the linear pattern not the rota-
tion symmetry is partially conserved, but the translational
one along the line. However only a small change in the
wheel size yields a CP again but with a very different fine
structure.

Are we lost? Confronted with such an overwhelming va-
riety of emerging patterns, are we faced with a robot that is
behaving completely unpredictable confirming just the con-
cerns against self-organizing robots we wanted to dispel?
One answer is found by taking a look at the controller pa-
rameters. As Figure 3 shows, the controller matrix C' is of
a very specific structure, it is a nearly perfect (scaled) rota-
tion matrix. Any such matrix rotates a vector by an angle
and stretches it by a factor, so it is parametrized by only two
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Figure 7: The HEXAPOD. 18 actuated DoF: 2 shoulder and 1
knee joint per leg. Fully forward/backward and lateral sym-
metric.

variables. This specific structure of the controller matrix,
obtained by the learning, also seems to be responsible for
the specific pattern creation effects. In principle, there are
essentially three possibilities for the asymptotic system dy-
namics with a fixed controller matrix: fixed point, limit cycle
and chaotic attractor. As we have observed in a series of ex-
periments, the limit cycles are most likely to occur with a
rotation matrix. This is intuitively understandable given that
the physical space is invariant against rotations.

In a sense, this specific controller structure is like a foot-
print left by the symmetries of physical space, imprinted into
the controller by spontaneous symmetry breaking, driven
by the unsupervised learning procedure that does not break
any symmetries by itself.

So, from looking inside, there is a coarse explanation of
how the robot achieves the patterns—by discovering, so to
say, the world of rotation matrices. However, the point of
major interest is that the learning finds those specific struc-
tures. On a general level, an understanding may be given by
the rule of thumb: a pattern in space can only emerge from
breaking the spatial symmetries inherent in the physics of
the robot. When trying to make this symmetry breaking as
parsimonious as possible, a circle is nearly perfect: while it
has broken the translational symmetry (the center is a fixed
point in space), rotation symmetry (around that center) is
fully conserved. Yet, because of its fine structure, the actual
patterns emerging in the learning scenario are not circles but
CPs. Nevertheless, they are still invariant against rotations
about a definite angle, see in particular the patterns of Fig-
ure 4 and Figure 5. This may be seen as a noteworthy paral-
lel to the hexagonal patterns known from many phenomena
in nature. So, the observed patterns apparently are the ones
with a high degree of preserving the spatial symmetries of
the physical system.

The HEXAPOD

Let us now follow the trace of symmetry breaking with a
high-dimensional six-legged robot: the HEXAPOD, see Fig-
ure 7. We choose this robot because it will be seen to reveal
symmetry breaking phenomena in a particularly clear way.
The robot has six legs, each one with three degrees of free-
dom (DoF). Each of the 18 joints is actuated by a servo mo-

Figure 8: Initially, after about 20 min the robot develops a
swaying motion pattern (top row), as if it is very actively try-
ing to move the legs in a coherent way while keeping ground
contact. 50 min later a raising behavior develops where the
trunk is repeatedly being lifted from the ground.

tor and contains a sensor that is measuring the actual joint
angle. The effective torques acting on the joint axes are de-
termined by a PID controller with a limited force. To enable
a body feeling (some useful feedback from the interaction),
this force limit is proportional to the deviation from the set
point, such that there is an elastic reaction to external forces,
similar to a system controlled by muscles.

In a typical experiment, the HEXAPOD is falling down
from a starting position a little above the ground. With the
least biased initialization the motor values are zero (y = 0)
so that all joints are in their center positions. When hitting
the ground, the robot gets into a damped vertical oscillation
due to the elasticity of the joint-motor system. This is suf-
ficient for providing an initial perturbation dx that is further
amplified by the learning dynamics.

What can we expect to happen? Depending on the con-
crete situation (e.g. particular ¢) different behaviors may
emerge. In most cases the robot starts with a swaying motion
pattern, see Figure 8 and video S3. We may claim again, that
this is in agreement with our rule of thumb since in this mo-
tion the joint angles are changing with a pretty high degree
of coherence as allowed by the physical constraints enforced
by the ground contacts.

More interesting behaviors emerge after some time, for
instance a raising behavior, see Figure 8. The entire devel-
opment can be followed in short pieces in the videos S3-S6.
There is another surprise—when looking at the parameters
of the controller. In the TWOWHEELED case the C'-matrix
developed into a rotation matrix. Of course, we can not ex-
pect such a clear result in the case of our HEXAPOD because
of the much higher dimensionality of the physical space and
the interaction with the ground.

Yet, as Figure 9(A) shows, the emerging sensor-to-motor
coupling matrix is highly structured, reflecting the original
symmetries to a high degree. Both the shoulders vertical di-
rection and the knees are seen to follow essentially the same
strategy for moving the body. This is in agreement with
our rule of thumb since this collective strategy allows the
body to be moving, but with a maximum degree of coher-
ence between the individual constituents of the body. More-
over, the coupling matrix reveals the whole-body nature of
the behavior—the control for each body part is generated by
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Figure 9: The parameters of the controller (C-matrix) for
two scenarios. Element C}; represents the coupling from
sensor j to motor ¢. Indices: 1-12: shoulders (verti-
cal/horizontal), 13-18: knees. (A) Swaying motion, Fig-
ure 8. (B) Seesaw motion with velocity sensor (index 19),
see Figure 10. The difference between the swaying and see-
saw behavior are clearly visible in the structure of the matri-
ces. While in swaying all legs follow the same strategy, the
antiphase nature of the seesaw behavior is reflected in the
different sign distribution of the matrix elements.

Figure 10: Seesaw motion pattern with forward/backward
speed sensor (top row), see video S7. Jumping motion pat-
tern emerging with vertical speed sensor (bottom row), see
video S8. Note the robot is in the air in the frames 2-4.

combining both excitatory and inhibitory signals from the
sensors of all joints in a systematic manner.

The formative power of exteroceptive sensors

Up to now we were using only proprioceptive sensors so that
the orientation of the robot in space can only be measured
very indirectly, e. g. by additional load to the joint motors
due to gravity forces. By including exteroceptive sensors,
the development of the modes can be influenced and driven
into desired directions. Adding a sensor measuring the for-
ward velocity of the robot generates a seesaw motion. In
contrast, a sensor measuring the vertical velocity of the robot
leads to a pronounced jumping behavior, see Figure 10. Also
here, we find highly structured controller matrices, see Fig-
ure 9(B) for the seesaw case. Note the strong coupling of the
exteroceptive sensor to the motor neurons showing the func-
tional role of that sensor. It distinguishes forward and back-
ward motion and thus this symmetry is lost, so that in the
learning process behaviors with broken forward-backward
symmetry are favored.

Discussion

This paper tries to answer essentially two questions. The
first question is about how to organize self-organization, in
other words, how can we find intrinsic mechanisms that

make a system able to self-organize. The answer was given
by the unsupervised learning rule (ULR), see equations (3)
and (4), which fulfills the main criterion for a genuine SO: it
is universal in the sense that the only necessary information
about the system is given by the number of sensors and that
of motor neurons, any further information being acquired by
the co-learning self-model in a bootstrapping process.

The second question we want to answer in this paper is
suggested by exactly that bootstrapping scenario: with noth-
ing specified from outside, what can we expect the learning
system to do. What will the emerging behaviors look like
and what will the relation to the embodiment of the robot
be? How and to which extent are the emerging behaviors
determined by the embodiment; and can we find systematic
criteria for those behaviors?

Several answers could be given by looking into the role of
the underlying symmetries of the system in space and time
which induces, given the constraints, corresponding symme-
tries in the physical system. The point then is that, while
driving the system towards instability, the ULR is preserving
these symmetries. As a result, the evolution of the system
in the learning process is realized by a sequence of sponta-
neous symmetry breaking steps, following—similar to what
we know from nature—a kind of parsimony principle. This
leads to our rule of thumb: the emerging behaviors in phys-
ical systems (robots) driven by our ULR are qualified by
a high activity while preserving as much of the underlying
symmetries as possible.

This rule brings the embodiment to the foreground. The
symmetries are embodiment specific and, moreover, break-
ing the symmetries is a process that is related to the very
physics of the system. This was demonstrated by a number
of examples. The first and probably the most surprising one
was given by the TWOWHEELED robot. Controlled by two
neurons with a fast synaptic dynamics given by the ULR,
the system in many cases was converging towards a limit cy-
cle behavior with the trajectories of the robot forming nearly
perfect geometric patterns. The emerging geometric patterns
where seen to depend on the embodiment (like the wheel
size) in a very intricate and sensitive way. Interestingly, the
limit cycle acts as a pattern factory: the parameters occur-
ring along the limit cycle produce a great variety of spin-off
patterns. While this effect has already been reported in Der
(2013), this paper presents further results and gives addi-
tional insights into this interesting effect.

Continuing the work started in Der (2013), similar effects
of symmetry breaking were obtained in the example of the
HEXAPOD. We observed the excitation of body related, high
activity modes with a high degree of coherence between the
body parts. These modes were argued to be in nice agree-
ment with our rule of thumb: emerging behaviors are qual-
ified by high activity while preserving the underlying sym-
metries of the system as far as possible (the principle of par-
simony in spontaneous symmetry breaking). In future work



we will be looking for a parallel of the pattern spin-off ef-
fect, hoping to thereby uncover a kind of pattern factory for
these more complex systems, too.

These results are a step forward as compared to the state
of the art. Previous work in self-organizing robot behav-
ior was either restricted to small, easy to analyze systems
or produced—Ilike with the principle of homeokinesis—
behaviors which looked interesting and were often com-
pletely surprising (Der and Martius, 2012), as it should be.
However, by the same argument, it was often not clear what
the robot is actually doing. With the new learning rule and
the concept of behaviors as broken symmetries, this is now
(a little) different. The essential difference between home-
okinetic learning and the ULR is the dynamics with the least
biased initialization (“‘do nothing” region with all synapses
zero). While the time-loop error of homeokinesis has a pole
there, the infomax based objectives are smooth in that re-
gion. It is basically this smoothness that makes the learning
to integrate the responses of the system dynamics in a sen-
sitive way. As compared to the TiPI (Martius et al., 2013),
the learning dynamics used here is even smoother and even
more concentrated on system responses which explains the
prevalence of spontaneous symmetry breaking effects. At a
more formal level, we see the difference also in the drift of
the local Lyapunov exponents: while homeokinesis drives
small exponents stronger than larger ones, the situation is
inverted in the present learning dynamics. Given the forma-
tive interplay between state and learning dynamics, this has
important consequences for the emergence scenario of the
behaviors.

The principles and examples given in this paper—in
particular the emergence of coherent modes, the TwoO-
WHEELED as a pattern factory and the various modes re-
alized by the HEXAPOD—may help us to better understand
and exploit the synergy between embodiment and SO of au-
tonomous robots.
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