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Abstract Autonomous robots can generate exploratory

behavior by self-organization of the sensorimotor loop. We

show that the behavioral manifold that is covered in this

way can be modified in a goal-dependent way without

reducing the self-induced activity of the robot. We present

three strategies for guided self-organization, namely by

using external rewards, a problem-specific error function,

or assumptions about the symmetries of the desired

behavior. The strategies are analyzed for two different

robots in a physically realistic simulation.

Keywords Guided self-organization � Autonomous

robots � Homeokinesis � Machine learning

Introduction

Self-organization of robot control selects behavioral modes

that are simultaneously optimized for sensitivity and pre-

dictability. The resulting behavior is characterized by

on-going exploration or by a refinement of those behavioral

traits which have come to be called ‘natural’ for a particular

robot in a particular environment. Animals, including

humans, acquire their behavioral repertoire in a similar way,

elementary behaviors are brought forth autonomously and

are further refined during the whole life span. Nevertheless,

the effects due to learning that modulate the self-organized

behavior are often not intrinsically produced. Animals can

learn by imitation or by downright teaching through supe-

rior fellows. In addition, behavior is subject to the dictate of

drives that have causes outside the biomechanical interplay

of body and environment. Humans derive goals for their

own behavior from rational reasoning. Each of these

incentives for behavioral adaptation is an interesting subject

for study in behavioral science, while the relation between

such higher forms of learning and primordial self-organi-

zation of the behavioral elements remains elusive. In

robotics the situation is only slightly different. Although

there exist promising examples (Verschure et al. 1992;

Kelso 1995; Herrman 2001; Der et al. 2006), self-organi-

zation of behavior is still a field of active exploration.

Further questions such as the interaction of learning by self-

organization and learning by supervision or by external

reinforcement are just starting to gain scientific interest.

Usually, goal-directed behavior is achieved by directly

optimizing the parameters of a control program such that

the goal is approached more closely. The learning system

must receive information about whether or not the behavior

actually approaches the goal. This information may be

available via a reward signal in reinforcement learning

(Sutton et al. 1998) or by a fitness function in evolutionary

algorithms (Nolfi et al. 2001). We will allow for different

types of goal-related information when aiming at a com-

bination of self-organizing control with external signals or

drives. For this combination the term guided self-organi-

zation (GSO) was extended (Martius et al. 2007; Pro-

kopenko 2009) beyond earlier usages in nanotechnology

(Choi et al. 2005) and swarm robotics (Rodriguez 2007). In

this general perspective, GSO is the combination of goal-
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Each of the two paradigms brings about its particular

benefits and GSO aims at combining them in a useful

manner. Self-organizing systems tend to have a high tol-

erance against failures and degrade gracefully, which is an

advantage that should not be given up when developing

systems for practical applications. In statistical learning an

analogous approach was proposed based on known sym-

metries or hints (Abu-Mostaf 1995).

Although a wider context could be interesting as well, we

will be dealing here with a specific approach to self-orga-

nizing control, namely homeokinetic learning (Der 2001).

What can we expect from a guided homeokinetic control-

ler? It has been shown earlier (Der and Liebscher 2002; Der

et al. 2002, 2006) that a variety of behaviors can emerged

from the principle of homeokinesis. The process of self-

organization has quickly structured the space of action

sequences into a set of behaviors that show a coherent

sensorimotor dynamics of the particular robot in its envi-

ronment. The goal is now to shape the self-organization

process to produce specific behaviors within a short time.

Part of the idea is to channel the exploration of the home-

okinetic controller around certain desired behaviors, such

that modes can be found which fit even better to the par-

ticular robotic device. This is especially important in high-

dimensional systems where the self-organized search for

behaviors can take a long time and it is not guaranteed that

all possible behaviors are visited in finite time. With addi-

tional soft constraints we can expect to achieve potentially

useful behaviors even in high-dimensional robotic systems.

What are specifically the challenges of guided self-

organization? Prokopenko (2008) has summarized the

differences between self-organization and the realization of

a particular function in engineering as follows:

In fact, one may argue that the notions of design and

self-organization are contradictory: the former

approach often assumes a methodical step-by-step

planning process with predictable outcomes, whereas

the latter involves non-deterministic spontaneous

dynamics with emergent features.

The challenge is to combine both in a favorable way

yielding a system that self-organizes such that the desired

function emerges and the properties like reorganization and

graceful handling of failures of the self-organizing system

remain.

In this article, we will discuss three mechanisms of guid-

ance. The first one uses online reward signals to shape the

emerging behaviors and is briefly discussed in Guided self-

organizing control, section. A second mechanism for guiding

allows for the incorporation of supervised learning signals,

e.g., specific nominal motor commands, which we call

teaching signals. Using distal learning (Jordan 1992) we study

the use of teaching signals in terms of sensor values. This

approach and a third mechanism that allows for the specifi-

cation of cross-motor teaching are presented here for the first

time and are given most of the available space. In particular

the latter will be proved an effective and simple way to

introduce useful constraints into the system and facilitate the

unsupervised development of specific behaviors.

Self-organized closed-loop control

Self-organizing control for autonomous robots can be

achieved by establishing an intrinsic drive toward behavioral

activity (Der 2001). We will formulate an appropriate con-

trol law within a dynamical systems approach, i.e., we con-

sider the sensor values, motor actions and possibly internal

parameters of a robot as the state of a dynamical system. In

order to formulate an adaptation rule for the parameter-

dependent controller of the robot a simplified version of this

dynamical system is obtained in form of a mathematical

model. In this context the controller represents a function that

maps sensory inputs to motor activations. The actuators

driven in this way change the relation of the robot and its

environment and typically also the sensory inputs are chan-

ged. In the following time step new sensor values are mea-

sured and so forth, such that the system forms a closed loop.

The self-evaluation of the behavior of the robot as well as

planning, complex control, and high-level optimization

require an internal model of how changes of sensor values are

caused by motor actions. For an open-ended acquisition of

behaviors this model must be adaptive which is assumed here

to be realized by the gradual improvement of a parameter

vector, i.e., the system is fully determined for a concrete

environment by the parameters of the controller of the robot,

the parameters of the model, and the initial state. Both con-

troller and internal model are implemented as artificial

neural networks. The update of all parameters is achieved by

minimizing certain functionals of the mismatch between the

prediction and the actual sensor values, i.e., the prediction

error. The internal model is adapted by a direct minimization

of this error using a gradient descent algorithm.

It is, however, not advisable to train also the controller

parameters by the same direct criterion, because each

behavior with unchanging or well predictable sensor values

becomes a stable attractor. Therefore, usually only trivial

behaviors are acquired, the robot may be doing nothing for

instance. Learning according to this principle therefore

tends to result in an impoverishment of the behavior. In

fact, the direct minimization of prediction errors in a

dynamical context can be related to homeostasis (Cannon

1939), but either the drive toward general activity must

arise from elsewhere (Di Paolo 2003) or the ‘‘trivial’’

behavior itself must be desirable such as in walking.
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tion of the prediction error, as proposed by the homeoki-

netic principle (Der 2001; Der and Liebscher 2002; Der

et al. 2002, 2006), solves the behavioral impoverishment

problem. The new objective function is based on the

postdiction error—the difference between observed and re-

estimated sensor values. Once new sensor values are

available previous sensor values can be re-estimated using

the inversion of the mathematical model. This re-estima-

tion is not perfect, hence we have a mismatch which is to

be minimized. Note, that if these re-estimated (virtual)

sensor values were actually observed instead of the true

ones then optimal prediction would have been possible. In

this way, the prediction error is implicitly also minimized.

What seems to be a mathematical nuisance has in fact

essential consequences for the stability of the learning

scheme. A schematic view of the homeokinetic controller

is displayed in Fig. 1.

We have seen that the minimization of the standard

prediction error, the forward error, leads to stable and often

trivial behaviors. The postdiction (or backward) error,

which is given by the difference between the previously

measured sensor values and their current re-estimates,

opens a different perspective for learning. In order to

obtain the backward error the sensorimotor loop function is

formally inverted. Practically, a linear approximation is

sufficient where the inverted Jacobian matrix transforms

the prediction error into the postdiction error.

The usage of the backward error for the update of the

forward dynamics implies a virtual inversion of time which

is known to reverse the stability properties of the system.

The effect is, however, slightly more subtle: We assume

that the prediction error at one time step is continuously

related to the error at the next time step. Therefore, the

minimization of a the postdiction error still keeps the actual

prediction error within certain bounds. When using the

backward error, actually the relation between the two types

of errors is affected. Owing to the adaptation a small

backward error will tend to produce a comparatively large

forward error which is manifested behaviorally in the

sensitivity of the robot with respect to environmental

stimuli. Since, however, the predictability is still optimized

at the same time, the approach mediates the two seemingly

contradicting goals of predictability and sensitivity.

We should note that the postdiction error can be mini-

mized both by adapting the behavior and by improving the

model. Therefore, model and controller behave comple-

mentary as the model dampens the controller while the

controller activates the model by sensitizing the behavior.

In the experiments this dynamic complementarity is seen to

produce a rich repertoire of behaviors that explore the

manifold of interactions between the robot and its

environment.

The dynamics specified in Box 1 produces an itinerant

trajectory in parameter-space corresponding to a sequence

of behaviors of the robot. These behaviors are, however,

waxing and waning and their time span and transitions are

hard to predict. Although all emerging behaviors are in a

sense ‘natural’ for the robot in the interaction with its

environment, only some of the behaviors are potentially

useful, interesting or beneficial. In the following we will

present a mechanism that still exploits the potential rich-

ness of the behavioral manifold but biases or guides the

self-organization of the robotic behaviors toward desirable

behaviors.

Let us now consider an application of the homeokinetic

controller. For that we use a simulated robot named the

SPHERICAL which is of a relatively simple design, however,

involving a complex control problem, see Fig. 2. This

robot has a spherical body and is actuated by three internal

weights that are movable along orthogonal axes. Thus any

change in the positions of the weights results in a change of

the center of mass of the robots and thus in a certain rolling

movement. The control of the system has to take into

account inertia effects and the non-trivial relation between

motor actions and body movements.

Fig. 1 Homokinetic controller in the sensorimotor loop. The post-

diction error is obtained from the prediction error by inverting the

sensorimotor loop w; cf. Box 1

Box 1

The sensorimotor loop is modeled by a function w which contains the

controller and world model. It maps current sensor values (xt) to the

next sensor values (xt?1):

xtþ1 ¼ w xtð Þ þ ntþ1 ð1Þ
where n is the prediction misfit. The parameters of the world model

are adapted to minimize the prediction error EPred ¼ kntþ1k. The

controller parameters C are adapted to minimize the postdiction error

EPost ¼ L�1
t ntþ1

�
�

�
� with Lt;ij ¼ owðxtÞi

oxt;j
ð2Þ

where Lt is the Jacobian matrix of the sensorimotor loop. In this way

we find Ctþ1 ¼ Ct � eC
o

oC EPost where a typical value of the learning

rate is eC ¼ 0:1. This gives rise to a simultaneous dynamics of the

state and of the parameters
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three weights along their axes and simulated motors are

used to move the weights to these positions. Initially the

robot is placed on even ground and does not move. As a

consequence of the homeokinetic learning rule the con-

troller becomes more and more sensitive to its sensor value

changes. The first movements are due to the amplification

of small noisy fluctuations until a more coherent physical

movement develops. Shortly afterwards a regular rolling

behavior is executed which breaks down infrequently to

give way for different movement patterns. In particular the

rolling modes around one of the internal axes are occur-

ring, see Fig. 3.

To summarize, the homeokinetic controller produces

body-related behaviors by self-organization of the senso-

rimotor dynamics of the robot including physical states

and internal parameters. Given minimal sensory noise,

the behaviors emerge for arbitrary initial conditions.1

The behaviors are waxing and waning due to the ongoing

re-organization process.

How can the controller achieve this apparently effective

control strategy without specific information about the

robot and its environment? It is important to realize that

also a fixed closed-loop controller is able to create a single

of the observed behaviors by a constant mapping of sensor

values to motor actions. Because the self-organizing con-

troller explores the relevant regions in the parameter space

it arrives at the appropriate region and remains there longer

than elsewhere. This is due to small prediction errors in this

region and the high stability of the physical dynamics,

while elsewhere larger errors also cause faster jumps

through the parameter space. If, in particular, rolling

movements are desired, the natural preferences of the

learning rule are nearly optimal. It is an interesting option

to use the self-referential learning dynamics of the present

approach with a modification of the system in order to

change the ‘natural’ behaviors. In this way, a much larger

class of objectives can be achieved while still maintaining

a self-organization of the dynamics. Illustrative examples

such as curved rolling, rotation around one particular axis

and other will be shown in the following.

Guided self-organizing control

How can we guide the learning dynamics such that a given

goal is realized by the self-organizing process? One option

was already suggested above in the experiment with the

SPHERICAL robot where the variations of the error cause the

system to stay in different regions of the parameter space

for different durations such that certain behaviors are

observed more often than others. If we include a reward

signal into the learning rule of the robot we can explicitly

modify these frequencies and obtain more of a desired and

less of an undesired behavior. Because the prediction error

acts as a factor in the learning rule, well predictable

behaviors persist longer than the more chaotic ones.

Therefore, weighting the error value according to the

desirability of a behavior can increase the duration of

rewarded behaviors while punished behaviors can be sup-

pressed. When applying this method to the SPHERICAL robot

we can e.g. achieve fast locomotion by rewarding for high

velocity and obtain curved driving and spinning modes

when rewarding for rotational velocity around the upwards

axis, see (Martius et al. 2007) for details.

A second and more stringent form of guidance will be

studied in this article. We will formulate the problem in

terms of problem-specific error functions (PSEF) that

indicate an external goal by minimal values. A trivial

example of such an error function is the difference between

externally defined and actually executed motor actions.

This is a standard control problem which, however,

becomes hard if the exploratory dynamics is not

abandoned.

Guided self-organization (GSO) focuses on this inter-

play between the explorative dynamics implied by home-

okinetic learning and the additional drives. The challenge

in the combination of a self-organizing system with

external goals becomes clear when recalling the charac-

teristics of a self-organizing system. One important feature

is the spontaneous breaking of symmetries of the system.

This is a prerequisite for spontaneous pattern formation and

is usually achieved by self-amplification, i.e., small noisy

perturbations cause the system to choose one of several

symmetric options while the intrinsic dynamics then causes

the system to settle into this asymmetric state. A nonlinear

stabilization of the self-amplification forms another ingre-

dient of self-organization. These two conditions which we

will call our working regime, are to be met for a successful

guidance of a self-organizing system. There are a number

of ways to guide the homeokinetic controller which we will

discuss in the following.

Guidance by teaching

Next we will describe how problem-specific error functions

(PSEFs) can be integrated into the homeokinetic approach

and consider a few illustrative examples. If a PSEF

depends functionally on the controller parameters it could

be minimized by gradient descent in the same way as the

homeokinetic error function. However, if the learning rule

1 There are some formal requirements on the parameters, for instance

that the determinant of the Jacobian matrix of the sensorimotor loop is

positive.
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is based on the sum of the homeokinetic error and the PSEF

then typically either the PSEF dominates the behavior or is

not effective at all. It is not obvious how to determine a

fixed weighting of the two contributions that leads to a

pursuit of the goal while still maintaining exploratoriness.

One reason is that the nonlinearities in the postdiction error

cause the gradient to vary over orders of magnitude. A

solution to this problem consists in scaling the contribution

of the PSEF according to the response strength of the

sensorimotor loop including the nonlinearities, such that

gradient of the homeokinetic error and the gradient of the

PSEF have a comparable effect. This scaling can be

achieved by a natural gradient (Amari 1998) in the

parameter update where the Jacobian matrix of the senso-

rimotor loop is used as a metric, see Box 2.

To start we consider the simple problem of a wheeled

robot that is to follow predefined motor actions called

teaching signals which are given externally with respect to

the self-organizing system. Since the controller is acting in

a closed loop, we have to capture the correct input-output

mapping rather than to learn a sequence actions. Therefore,

we can define the PSEF as the mismatch between motor

teaching signals and the actual motor values, see Box 2.

The latter have a direct functional dependency on the

controller parameters, such that the gradient descent can be

performed. In order to evaluate this mechanism of guidance

we will analyze the TWOWHEELED robot which is a platform

similar to the Khepera robot. The two wheels are driven by

motors that can rotate in both directions. The motor signals

determine the desired rotational velocity which is then

checked by two sensors for the actual wheel velocities. The

difference between the actual and desired velocity can be

used by the robot to detect the presence of an obstacle. As a

test of guidance we provide the controllers of the two

motors with an oscillating teaching signal. To be integrated

Fig. 2 SPHERICAL robot: driven

by weights and equipped with

axis-orientation sensors.

a Screen shot from a physically

realistic simulation. The ball-

shaped weights are moved by

actuator along the axes;

b Schematic view of the robot

with axis-orientation sensors (xi)

(a) A B C D

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8

0 100 200 300 400 500 600

time [s]

(b)

A B C D B D

y1 y2 | | ||| | y3 5E

Fig. 3 SPHERICAL robot

exploring its behavioral

capabilities. a Sketch of four

typical behaviors A–D, namely

the rolling mode around the

three internal axis (A–C) and

around any another axis (D); b
Amplitudes of the motor value

oscillations (y1...3) and the time

loop error (E) averaged over

10 s (scaled for visibility).

Corresponding behaviors are

indicated with letters (A–D)

Box 2

The controller parameters C are updated by gradient descent with

learning rate eC.

Ctþ1 ¼ Ct � eC
oEPost

oC � eCc oEG

oC LtL
>
t

� ��1 ð3Þ
The guidance factor c C 0 is usually small since sensitivity to

guidance is assured by the homeokinetic term EPost defined in Eq. 2 in

Box 1 on page 4. The last term contains the problem specific error

function

EG ¼ kyG
t � ytk2 ð4Þ
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more easily it is at first smoothly sine shaped, while at an

intermediate phase it is turned into a step function. The

resulting behavior is a mixture between the taught behavior

and self-organized dynamics. The teaching signals are

followed most of the time but with occasional exploratory

interruptions. Especially when the teaching signals have a

small absolute value because then the system remains

closer to the critical point which is formed by the branching

point of the two fixed points corresponding to forward and

backward motion. These interruptions cause the robot for

example to move in curved fashion instead of driving in a

straight line as the teaching signals dictate. The exploration

around the teaching signals might be useful to find modes

which are better predictable or more active, see Fig. 4.

Sensor teaching and distal learning

Because it is often easier to specify desired values for the

sensor input than for the motor values, we will now show

how to transfer the motor teaching paradigm to the sensory

space. As a result the robot will be capable of performing

imitation learning or can be trained based on a sensory

trajectory that is recorded while it is passively moved

around. Thus, a series of nominal sensations can be

acquired that can serve as teaching signals. Providing the

desired outputs in a different domain than the actual con-

troller outputs leads to a distal learning problem (Jordan

1992; Stitt et al. 1994; Dongyong et al. 2000). Usually a

forward model is learned that maps actions to sensations or

more generally to the space of the desired output signals.

Then the mismatch between a desired and occurred sen-

sation can be backpropagated to obtain the required change

of action. The backpropagation can also be done using an

inversion of the forward model or by using a backward

model, which learns the mapping from sensations to

actions. In our case a forward model is already at hand,

namely, it is given by the internal world model, see section

Self-organized closed-loop control. Instead of a back-

propagation we can also invert the world model directly

since we use a linear implementation. The sensor teaching

signals xt
G are converted into motor teaching signals using

the inverted model. Then one can apply the same mecha-

nism as in Guidance by teaching.

Let us consider a more complicated example to illustrate

the potential of this method, namely to induce in the

SPHERICAL robot a preference for rolling around one par-

ticular axis. For each axis the robot has an height sensor

measuring the z-component of the vector attached to this

axis, see Fig. 2b. A rotation of the robot around one of the

internal axes is characterized by a zero sensor value for this

axis while the remaining two sensor values oscillate peri-

odically. In order to guide the robot into the rotation about,

e.g., the first axis (shown in red in Fig. 2) we use a distal

teaching signal whose first component is zero and the

remaining two components contain the present sensor

values such that the only learning signal relates to the first

component.2

For an evaluation of the resulting behavior, we use the

index of the internal axis with the largest rotational

velocity. Figure 5 displays the percentage of times the first

axis was actually the major axis of rotation. This infor-

mation is given in dependence of the guidance factor c (see

Box 2). As expected there is no preferred axis of rotation

without guidance (c = 0). With distal learning the robot

-1

-0.5

0

0.5

1
(a)

(b)

-0.2
0

0.2
0.4
0.6
0.8

1
1.2

0 20 40 60 80 100 120 140 160 180

time [s]

yG y1 y2

C11
C12

h1

(c)

0
0.001

0.005
0.01

0.05
0.1

0.5
1.0

0.2

0.4

0.6

0.8

1.0

1.2
EG

γ

Fig. 4 TWOWHEELED robot controlled with homeokinetic controller

and motor teaching signals. a The teaching signals yG (identical in

both components) are followed partially by the motor values y1,2 after

teaching was switched on with c = 0.01 at 60 s. b Time evolution of

the controller parameters affecting the first motor is shown to

illustrate that only little changes are necessary, however, the

adaptations do not vanish; c Average value of the PSEF EG (for

five experiments each 5 min long) in dependence of c (note the

logarithmic scale). The noise level (gray dotted line) is reached at

c = 1. Parameters: (a, b) c = 0.01, update rate 100 Hz

2 The teaching signal vector is given by xG
t ¼ 0 xt;2 xt;3

� �>
; where xt,i

are the sensor values at time t.
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axis up to 75%. For overly strong teaching, a large variance

in the performance occurs. This is caused by a too strong

influence of the teaching signal on the learning dynamics.

If the the PSEF were ideally matched to the dynamics of

the robot, arbitrary values of c would be possible. In

practice, however, the PSEF will provide only a hint

toward the correct behavior and the details are left to be

explored by the homeokinetic controller. At large values of

c the potential mismatches in the PSEF will influence to

behavior of the robot in some runs which results in the

large variance of the performance. Remember that the

rolling modes can emerge due to the fine regulation of the

sensorimotor loop to the working regime of the homeoki-

netic controller which cannot be maintained at a predom-

inance of the PSEF.

Finally, one may ask why this method is unable to keep

the controller at the desired rotational mode at all times?

When the robot is in this rotational mode the teaching

signal is negligible. However, the controller’s drive to be

sensitive will increase the impact of the first sensor, such

that the mode becomes unstable again.

Guidance by cross-motor teaching

Finally we want to propose a guidance mechanism with

internal teaching signals. As an example we want to

influence the controller to prefer a mirror-symmetry in the

motor patterns. This can be achieved by using the motor

value of one motor as the teaching signal for another motor

and vice versa. In other words, the teaching signals for each

time step are given by a permutation of the motor values

itself. This self-supervised teaching induced soft con-

straints which reduce the effective dimension of the sen-

sorimotor dynamics and thus guide the self-organization

along a sub-space of the original control problem.

Let us consider the TWOWHEELED robot again and sup-

pose the robot should move mostly straight, not get stuck at

obstacles or in corners and cover substantial parts of its

environment. We will see that all this can be achieved by a

simple guidance of the homeokinetic controller where both

motors are mutually teaching each other.3

For experimental evaluation we placed the robot in an

environment cluttered with obstacles and performed many

trials for different values of the guidance factor. In order to

quantify the influence of the guidance we recorded the

trajectory, the linear velocity, and the angular velocity of

the robot. We expect an increase in linear velocity because

the robot is to move straight instead of turning. For the

same reason the angular velocity should go down. In Fig. 6

the behavioral quantification and sample trajectories are

plotted. In addition, the relative area coverage4 is shown,

which reflects how much more area of the environment was

covered by the robot with guidance compared to the case

without. As expected, the robot shows a distinct decrease in

mean turning velocity and a higher area coverage with

increasing values of the guidance factor until the guidance

dominates the behavior. Note that the robot is still per-

forming turns and drives both backwards and forwards and

does not get stuck at the walls, as seen in the trajectory in

Fig. 6b. The properties of the homeokinetic controller,

such as sensitivity and exploration, remain up to a certain

strength of the guidance.

Discussion

We have presented here two new methods for guiding self-

organizing behavior that are based on teaching signals.

Desired motor patterns were specified by means of an error

function that was integrated into the learning dynamics.

The strength of guidance can be conveniently adjusted.

Because teaching information is often given in the sensor

space whereas learning is performed in the motor repre-

sentation, a transformation is necessary which is obtained

from the adaptive internal world model. The feasibility of

both approaches was demonstrated by robotic experiments.

We introduced cross-motor teachings in order to be able

to specify relations between different motor channels. If it
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0
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Fig. 5 SPHERICAL robot and its behavior guided to rotate around the

first internal axis. Behavior for the distal learning task. The figure

shows the percentage of rotation around each of the internal axes and

the number of times the behavior was changed for different values of

the guidance factor c (no teaching for c = 0). The rotation around

the first axis is clearly preferred for non-zero c. The mean and

standard deviation are plotted for 20 runs each 60 min long, excluding

the first 10 min (initial transient, no guidance). For too large values of

the guidance factor the self-organization process is too much

disturbed such that the robot gets trapped in a random behavior

(see dashed-dotted line). Parameters: �C ¼ �A ¼ 0:1; update rate

100 Hz

3 The teaching signal is yt,1
G = yt,2 and yt,2

G = yt,1.

4 The area coverage of the trajectory is calculated using a box-

counting method.
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is known or desired that certain degrees of freedom of a

robot should move in a coherent way, e.g., symmetrical or

anti-symmetrical, then these relation can be injected as soft

constraints that reduce the effective dimensionality of the

system. As an example, the TWOWHEELED robot showed

that by enforcing the symmetry between the left and right

wheel the behavior changes qualitatively to straight

motion.

The exploratory character of the controller is neverthe-

less retained and helps to find a behavioral mode even if the

specification of the motor couplings is partially contradic-

tory. The resulting behaviors are not enforced by the

algorithm. For example the TWOWHEELED robot can choose

freely between driving forward or backward whereas in

direct teaching the direction of driving is obviously dic-

tated by an external teacher. Furthermore, it is evident that

the robot remains sensitive to small perturbations and

continues to explore its environment.

Guided self-organization shares some properties with

other approaches to autonomous robot control such as

evolutionary algorithms (Nolfi et al. 2001) and reinforce-

ment learning (RL) (Sutton et al. 1998). Evolutionary

algorithms can optimize the parameters of the controller

and are able to produce the same behaviors as we found in

this study cf. (de Margerie et al. 2007; Ijspeert et al. 1999),

if the fitness function is carefully crafted. More specifi-

cally, recent studies (Mazzapioda et al. 2009; Prokopenko

et al. 2006) in evolutionary robotics have shown that the

pursuit of task-independent aims can be helpful in opti-

mizing a specific objective. This approach is related to the

combination of (task-independent) self-organization and

specific goals in this study. A critical experiment for the

guided self-organization would investigate high-dimen-

sional systems that cannot be decomposed into identical

components.

A further difference is that self-organizing control is

merely modulated by guidance, whereas evolutionary

algorithms tend to converge to a static control structure. RL

uses discrete actions or a parametric representation of the

action space. In either case, high-dimensional systems will

cause slow convergence. Recent findings with a chain-like

robot (Martius and Herrmann 2011) show a clear advantage

of cross-motor teaching in comparison to generic RL

although similar relations among the actions in RL com-

pensate part of this drawback. Natural actor-critics (Peters

et al. 2005) may bring a further improvement of the RL

control, but natural gradients can also be incorporated here.

A decisive advantage of cross-motor teaching may be that

goal-directed behaviors emerge within the self-organiza-

tion of the dynamics from a symbolic description of the

problem and do not need continuous training data such as

in imitation learning (Peters 2008).

It is, however, clearly an interesting option to adapt

cross-motor teaching to an imitation learning scenario.

Although delayed rewards are still non-trivial for contin-

uous domains, RL can cope with them in principle, while

the guidance with rewards (Martius et al. 2007) requires

instantaneous rewards.
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Fig. 6 Behavior of the

TWOWHEELED robot when

guided to move preferably

straight. a Mean and standard

deviation (of 5 runs each 20 min

long) of the area coverage,, the

average velocity hjvji; and the

average turning velocity hjxzji
for different values of the

guidance factor c. Area

coverage (box counting method)

is given relative to the case

without influence (c = 0:

100%) (right axis). The robot is

driving straighter and its

trajectory covers more area for

larger c, until at large c the

teaching dominates the behavior

of the robot. b Example

trajectories for different

guidance factors. Parameters:

�C ¼ �A ¼ 0:01; update rate

100 Hz
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