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Abstract In recent years, information theory has come

into the focus of researchers interested in the sensorimotor

dynamics of both robots and living beings. One root for

these approaches is the idea that living beings are infor-

mation processing systems and that the optimization of these

processes should be an evolutionary advantage. Apart from

these more fundamental questions, there is much interest

recently in the question how a robot can be equipped with an

internal drive for innovation or curiosity that may serve as a

drive for an open-ended, self-determined development of

the robot. The success of these approaches depends essen-

tially on the choice of a convenient measure for the infor-

mation. This article studies in some detail the use of the

predictive information (PI), also called excess entropy or

effective measure complexity, of the sensorimotor process.

The PI of a process quantifies the total information of past

experience that can be used for predicting future events.

However, the application of information theoretic measures

in robotics mostly is restricted to the case of a finite, discrete

state-action space. This article aims at applying the PI in the

dynamical systems approach to robot control. We study

linear systems as a first step and derive exact results for the

PI together with explicit learning rules for the parameters of

the controller. Interestingly, these learning rules are of

Hebbian nature and local in the sense that the synaptic

update is given by the product of activities available directly

at the pertinent synaptic ports. The general findings are

exemplified by a number of case studies. In particular, in a

two-dimensional system, designed at mimicking embodied

systems with latent oscillatory locomotion patterns, it is

shown that maximizing the PI means to recognize and

amplify the latent modes of the robotic system. This and

many other examples show that the learning rules derived

from the maximum PI principle are a versatile tool for the

self-organization of behavior in complex robotic systems.

Keywords Autonomous systems � Predictive

information � Self-organization � Sensorimotor loop �
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Introduction

In recent years, information theory has come into the focus

of researchers interested in the self-organization of robot

behavior. One root for these approaches is the idea that

living beings are information processing systems and that

the optimization of these processes might be an evolu-

tionary advantage. Apart from these more speculative

ideas, there is much interest recently in the question how a

general principle can be found for equipping a robot with

an internal drive for innovation or curiosity. This leads

away from the pure task-dependent paradigms of robotics

toward a robot that is driven solely by the desire to get

more and more information about itself and the environ-

ment. Eventually, a strategy for an open-ended, self-

determined development of the robot might emerge.

First results in that direction have already been obtained

in Ay et al. (2008) for the case of one-dimensional sys-

tems. This article aims at generalizing those results in
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dimensions, get (ii) exact results for special model systems,

(iii) derive explicit learning rules for the general case, and

demonstrate that these learning rules are of a Hebbian like

structure so that parallels to biological systems can be

drawn. Last but not least we find, using our exact results,

several surprising effects in stochastic oscillator systems

that may help to better understand the efficiency of the

information-theoretic approach in embodied robotic

systems.

Information-theoretic aspects

The development of the information-theoretic approaches

has soon made clear that one has to use a convenient measure

for the information. Maximizing Shannon’s information is

not directly feasible since it favors processes, like noise, of

maximum randomness. Optimal in that sense would be a

robot that behaves as random as possible. An alternative is

Kolmogorov complexity, a measure on which Schmidhuber

has based his approach to self-motivation and artificial

curiosity, see Schmidhuber (2007) for an introduction.

Moreover, in Lungarella et al. (2005) a set of univariate and

multivariate statistical measures are introduced to quantify

the information structure in sensory and motor channels.

Generic information-theoretic criteria may vary in their

emphasis: e.g., one may focus on maximization of empow-

erment (the perceived amount of influence or control that the

agent has over the world; Anthony et al. 2009; Klyubin et al.

2005); minimization of heterogeneity across states of mul-

tiple agents, measured with either the variance of Shannon

entropy of rule-space (Prokopenko et al. 2005) or Boltzmann

entropy of swarm-bots’ states (Baldassarre 2008); maximi-

zation of spatiotemporal coordination within a modular

robot, measured via the excess entropy computed over a

multivariate time series of modules’ states (Prokopenko

et al. 2006), etc.

What is common to these examples of information-driven

self-organization is the characterization of the sensorimotor

(or perception-action) loop in information-theoretic terms.

For instance, empowerment measures the amount of Shan-

non information that the agent can, by executing the actions,

inject into its sensors through the environment, affecting

future actions and future perceptions. Technically, for a pre-

defined agent’s behavior, empowerment is defined as the

capacity of the agent’s actuation channel: the maximum

mutual information (MI) for the channel over all possible

distributions of the transmitted signal (i.e., actions) (Klyubin

et al. 2005, 2007). On the other hand, the maximization of

excess entropy during a time interval, used in Prokopenko

et al. (2006), allows to change the controllers’ logic (i.e.,

change the agent’s behavior) within a modular robot in such a

way that its actuators become coordinated. In this example,

the adaptation of controllers occurs by evolution with the

fitness function rewarding the regularity and richness of the

actuators’ multivariate series. The same adaptation can also

be achieved during the agent’s lifetime— in other words, the

time interval over which the excess entropy is computed may

be interpreted either as the full lifetime of the individual

(leading to an evolutionary representation) or as a finite

period within such lifetime (leading to an online learning

representation).

Predictive information (PI)

This article studies in some detail the use of the predictive

information of the sensorimotor process for the self-orga-

nization of robot behavior. Moreover, an essential objec-

tive is to make the approach independent of any

discretization of the state and/or the action space so that it

can be immediately useful in the dynamical systems

approach to robotics. The PI of a process quantifies the

total information of past experience that can be used for

predicting future events. Technically, it is defined as the MI

between the future and the past, see Bialek et al. (2001). It

has been argued that PI, also termed excess entropy

(Crutchfield and Young 1989) and effective measure

complexity (Grassberger 1986), is the most natural com-

plexity measure for time series.

The behaviors emerging from maximizing the PI are

qualified by the fact that PI is high if—by its behavior—the

robot manages to produce a stream of sensor values with high

information content (in the Shannon sense) under the con-

straint, however, that the consequences of the actions of the

robot remain still predictable. A robot maximizing PI,

therefore, is expected to show a large variety of behaviors

without becoming chaotic or purely random. In this working

regime, somewhere between order and chaos, the robot may

be expected to explore its behavioral possibilities in a most

effective way. How and why this works is made more explicit

in the concrete dynamical system investigated below.

Intrinsic motivation

The use of PI complements approaches that equip the robot

with a motivation system producing intrinsic reward sig-

nals. Pioneering work has been done by Schmidhuber

(1990) using the prediction error as a reward signal to make

the robot curious for new experiences. The approach has

been further developed in a number of papers, see e.g.,

Storck et al. (1995) and Schmidhuber (2009). Related ideas

have been put forward in the so called play ground

experiment by Kaplan and Oudeyer (2004; Oudeyer et al.

2007) using the learning progress as a reward signal. Steels

(2004) proposes the Autotelic Principle, i.e., the balance of

skill and challenge of behavioral components as the
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(2004) uses the prediction error of skill models to build

hierarchical skill collections. PI could be used alternatively

as a reward signal in reinforcement learning. This would be

of special interest also in connection with recent develop-

ments in reinforcement learning in continuous state action

spaces, cf. Theodorou et al. (2010), Kober and Peters

(2009), and Engel (2010), because the PI is not restricted to

discrete spaces at all. However, in this article, we will not

follow this line but instead derive task-free learning rules

directly from the gradient ascent on the PI.

PI and dynamical systems

The application of information-theoretic measures in

robotics mostly is restricted to the case of a finite state-

action space with discrete actions and sensor values. The

past two decades in robotics have seen the emergence of a

new trend of control in robotics which is rooted more

deeply in the dynamical systems approach to robotics using

continuous sensor and action variables. This approach is

very appealing since it yields more natural movements of

the robots and allows to exploit embodiment effects in a

most effective way. For instance many successful realiza-

tions of the so called morphological computation are

realized using recurrent neural networks as controller of the

dynamical system consisting of body, brain, and environ-

ment, see Pfeifer and Bongard (2006) and Pfeifer et al.

(2007) for an excellent survey.

The information-theoretic approach in the dynamical

systems representation has still to be worked out in detail and

it is the main motivation of this article to present some first

results in that direction. We start by answering the following

question: Given a robot in its environment, how can we find

an explicit learning rule for optimizing the behavior such that

the PI of the sensor process is maximized? This approach has

to work from scratch, i.e., without any knowledge about the

robot, so that everything has to be inferred from the sensor

values alone. In this article, we approach that challenge by

studying, in a first step, linear systems. This is a restriction of

generality but has the advantage that we get analytical

results, general statements, and last but not least explicit

learning rules. Furthermore, the results are useful also in the

non-linear case which is subject of our ongoing research.

In a recent article (Zahedi et al. 2010), a general

learning rule has been derived from the PI using the natural

gradient technique in a finite state-action space. This article

complements that approach by the study of the case of

continuous spaces and controllers realized by parameter-

ized functions such as neural networks. The information-

theoretic approach can also be considered as an alternative

to the principle of homeokinesis (Der and Liebscher 2002;

Der 2001), a systematic approach to the self-organization

of behavior that has been applied successfully to a large

number of complex robotic systems, cf. Der et al. (2005,

2006a, b), Der and Martius (2006, 2011). Moreover, this

principle has also been extended to form a basis for a

guided self-organization of behavior (Martius et al. 2007;

Martius 2010; Martius and Herrmann 2010). We hope to

benefit substantially from this parallel in future work.

Organization of the article

The general aim of the article is to establish PI as a systematic

basis for the behavioral self-organization of autonomous

robots. We start with formulating the sensorimotor loop in

the language of probability theory as it is most appropriate

for the information-theoretic approaches and give subse-

quently the formulation of specific model systems in the

language of dynamical system theory. This part is of a more

didactic nature providing the interested but not specialized

reader with the relevant background. We introduce PI in

‘‘Predictive information’’ and study some basic properties

without going much into detail since we find afterward

explicit expressions for the PI and discuss general properties

by the examples. The considered systems are of a structure

well known from linear control theory so that several of the

results are not new. We rederive them on an elementary basis

to keep the article self-contained. New results are presented

in ‘‘Example stochastic oscillator’’: we study stochastic

oscillator systems in two dimensions and find some sur-

prising effects. In our setting, the PI is shown to be maximal if

the controller engenders a period 4 oscillation. Moreover, if

the world is supporting a stochastic oscillation by itself, we

find a resonance effect in maximizing the PI. This setting

mimics specific embodied systems with latent oscillatory

locomotion patterns that can be excited by the controller.

Section ‘‘Learning rules—the self-referential robotic sys-

tem’’ eventually introduces and discusses the explicit

learning rules derived from a gradient ascent on the land-

scape of the PI over the controller parameters.

The sensorimotor loop

The sensorimotor loop introduced by Fig. 1 can be for-

malized either in terms of the kernels which define the

processes or by specifying the corresponding time discrete

stochastic dynamical system.

Probabilistic formulation

We are now going to give a brief sketch of the represen-

tation of the sensorimotor loop, cf. Fig. 1 by formulating

the relevant transition kernels. We do not claim that the

diagram represents every specific situation but, to our
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experience, most of the situations encountered in robotics

or biology are being covered. Quite generally, a kernel

p(y|x), where x 2 R
n and y 2 R

m; is a function f : Rn �
R

m ! R
1 assigning to each pair of vectors (x, y) a non-

negative real number, such that
R

f x; yð Þ dy ¼ 1 for every x.

The pertinent kernels specifying the sensorimotor loop are

given as

– The dynamics of the world (which is usually not known

explicitly) is assumed to be described by the kernel

pðwtþ1jwt; atÞ defining the probability density that the

world state in the next time step is wtþ1 given the world

is now in state wt and action at has been executed.

– The world state wt 2 R
nW observed at time t is mapped

by the kernel p stjwtð Þ to the sensor state st 2 R
nS :

– However, the sensor process ðStÞt2N usually does not

contain complete information. This situation is gener-

ally known as the problem of hidden variables. One

way out of this is to introduce the memory mt which

includes earlier sensor values. In this way, part or all

the missing information can be reintroduced by the

memory. A theoretical foundation can be found in the

embedding theorems well known form dynamical

systems theory or time series analysis, cf. Kantz and

Schreiber (2003). The time evolution of the memory mt

is given by the kernel p mtjmt�1; stð Þ:
– Actions are given in terms of the current memory by

the kernel pðatjmtÞ which defines the policy of the

agent.

– Internally, the agent constructs a world model repre-

sented by the kernel pðstþ1jmt; atÞ defining the transi-

tion to the new sensor values in terms of the memory

and the actions taken by the agent. Note that in general

the world model will be valid only approximately.

– The aim of this article is to derive learning rules that

allow the agent to adapt its behavior in the direction of

higher PI. For this purpose, the agent has to make an

estimate of the latter. This is possible in terms of the

kernels pðstþ1jmt; atÞ; pðatjmtÞ; and p mtjmt�1; stð Þ:

In order to derive explicit expressions, we are going to

consider the particularly simple situation where the

memory is restricted to the last sensor vector st alone.

In this situation, only the following two kernels are

required:

p stþ1jst; atð Þ p atjstð Þ ð1Þ

In this specific case, the sensor process is more

compactly defined by the kernel

p stþ1jstð Þ ¼
Z

p stþ1jst; að Þp ajstð Þ da ð2Þ

One of the aims of this paper is to use the information-

theoretic measures, specifically the PI, in the dynamical

systems theory of the sensorimotor loop. We, therefore,

give in the following the relation between the probabilistic

and the dynamical system formulation of the sensor

process, restricting ourselves to the simple sensor process

as defined in Eq. 1.

Dynamical systems formulation

The translation of the sensorimotor dynamics as given by

the above kernels into the dynamical systems language can

be done in different ways. A general approach is given by

the method of functional causal models (Pearl 2000).

However, here we want to consider specific systems given

by the kernels of the kind

p stþ1jat; stð Þ ¼ f stþ1 � F at; stð Þð Þ ð3Þ

where f : Rn ! R
1 is a probability density function, i.e., a

function with f C 0 and
Z

f uð Þ du ¼ 1

In general, the noise may be state-dependent. However, we

will use only additive noise terms (no state dependence) in

the following to get analytical results as a first step toward

more general situations.

Consider the stochastic dynamical system

Stþ1 ¼ F St;Atð Þ þPtþ1 ð4Þ

where Ptf gt2N are independent, identically distributed

random variables with values in R
n having the probability

density function f. From a physical perspective the random

variable Pt is the noise at time t. Identical distribution of

the noise implies time homogeneity of the noise process

and independence is equivalent to the white noise property.

Then St is a time-homogeneous Markov chain with tran-

sition kernel given by Eq. 3.

In a similar way, the action kernel is assumed to have

the structure

Fig. 1 Schematic representation of the sensorimotor loop. The state

of the world at time t is wt. The world is observed by the sensor values

st which are then memorized by the internal state mt. Actions are

functions of the internal state m

164 Theory Biosci. (2012) 131:161–179
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This is equivalent to a process At

At ¼ K Stð Þ þHt ð5Þ

where At has values in R
nA and represents the vector of

motor values at time t, whereas Ht has values in R
nA and

represents the actuator noise.

For most calculations, we will restrict ourselves to the

case of Gaussian noise so that

f uð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þn D1j j

p exp uT D�1
1 u

� �
;

and

g uð Þ ¼ 1
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2pð Þn D2j j

p exp uT D�1
2 u

� �
;

where D1 and D2 are positive matrices. We use the notation

Lj j ¼ det L

wherever this does not lead to ambiguities. Furthermore,

Pt and Ht are independent, Gaussian random variables

with mean zero and covariance matrices given by

D1 ¼ E PtPt
T

� �
and D2 ¼ E HtHt

T
� �

; respectively.

Before going into a detailed discussion of such processes,

let us first introduce the PI of a stochastic process.

Predictive information

The PI is the MI between the future and the past, relative to

some instant of time t, of the sensor process S ¼ ðStÞt2N

I Spast; Sfuture

� �
¼ ln

p Spast; Sfuture

� �

p Spast

� �
p Sfutureð Þ

* +

¼ H Sfutureð Þ � H SfuturejSpast

� �
ð6Þ

where the averaging is over the joint probability

p Spast; Sfuture

� �
: Note that in the case of continuous vari-

ables we are dealing with differential entropies so that the

individual entropy components H Sfutureð Þ;H SfuturejSpast

� �

may well be negative, whereas the PI is always positive

and may exist even in cases where the individual entropies

diverge. This is a very favorable property deriving from the

explicit scale invariance of the PI, see below.

Equation 6 simplifies considerably if S is a Markov

chain, see Ay et al. (2008), the case we want to consider in

this article. In this case, the PI is given by the MI between

two successive time steps, i.e., instead of Eq. 6 we consider

I Stþ1;Stð Þ¼ ln
p Stþ1;Stð Þ

p Stþ1ð Þp Stð Þ

� �

¼H Stþ1ð Þ�H Stþ1jStð Þ ð7Þ

which simplifies the sampling process considerably.

This expression also reveals the properties of the PI in

most simple terms. The PI obviously is large if both

H Stþ1ð Þ is large and H Stþ1jStð Þ is small. The first point

means that the variability in the sensor values is high which

is the case if the robot displays a high behavioral diversity.

The second point means that St determines St?1 very well.

This is the case, if the behavioral diversity is a direct

consequence of the actions of the robot in relation to the

specific environmental conditions.

In experiments with a coupled chain of robots done

earlier (Der et al. 2008), it was observed that the PI of just

a single sensor, one of the wheel counters of an individual

robot, already yields essential information on the behavior

of the robot chain. It proved to be maximal if the individual

robots managed to cooperate so that the chain as a whole

could effectively explore the arena. This is remarkable in

that a one-dimensional sensor process can already give

essential information on the behavior of a very complex

physical object under real-world conditions. These results

give us some encouragement to study the role of the PI and

other information measures for relatively simple sensor

processes as is done in this article.

Example systems

Let us consider the PI for the case of a linear dynamics, i.e.,

we choose in Eqs. 4 and 5

K sð Þ ¼ Cs and F s; að Þ ¼ Tsþ Va ð8Þ

the matrix T representing the contribution to the sensor

process due to some dynamics of the world alone and V

represents the sensor response to the output of the con-

troller. Note that many of the linear control systems studied

in engineering are of this kind (with a different notation

convention).

Under the assumptions made, any realization of the

sensor process St is now given by

stþ1 ¼ Rst þ ntþ1 ð9Þ

where

R ¼ T þ VC ð10Þ

and nt ¼ Vht þ pt is the effective combination of controller

and world noise. The kernel from Eq. 2 now becomes

p stþ1jstð Þ ¼ h stþ1 � Rstð Þ; where h is the probability den-

sity of a Gaussian random variable with mean zero and

covariance matrix D ¼ D1 þ VD2VT :

PI in linear control systems

Equation 9 can be considered as an AR(1) process. Auto-

regressive models play an important role in many branches

of science and engineering so that there is a large body of
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sures such as predictive information can be obtained in

closed form. We rederive some of these results here in

elementary ways to keep the article self-contained.

The process

Let us consider the case of the process defined by Eq. 9

with

Nt �N 0;Dð Þ for all t

The noise is assumed to be white so that E NtNT
t0

� �
¼ 0 for

t 6¼ t0: Moreover, the spectral radius of R is assumed to be

less than one so that limt!1 Rts ¼ 0 for any vector s.

Equation 9 immediately implies:

stþs ¼ Rsst þ
Xs�1

k¼0

Rkntþs�k ð11Þ

Since the noise is white and since linear combinations of

linearly transformed Gaussian random variables are

Gaussian again, we get the following distribution of Stþs

given St:

Stþs tj �NðRsSt;Rstþs tj Þ; where Rstþs tj ¼
Xs�1

k¼0

RkDRkT

ð12Þ

Considering the limit s!1; which exists since we

assumed the spectral radius of R to be less than one, we

find that, for any initial distribution, the sensor process

converges strongly1 to a centered Gaussian distribution

with the covariance matrix

Rs ¼
X1

k¼0

RkDRkT ð13Þ

Alternatively, Rs is easily shown to be the solution of the

discrete Lyapunov equation

Rs ¼ RRsR
T þ D ð14Þ

by simply rewriting Eq. 13.

These considerations show that the sensor process is

ergodic and has a unique stationary distribution. From here

on we assume that the initial distribution is that stationary

distribution, such that ðStÞt2N becomes a stationary process.

Explicit expression

The conditional distribution of St?1 with St given is a

special case of Eq. 12 with s = 1:

P Stþ1jStð Þ ¼ N RSt;Dð Þ ð15Þ

The value of the entropy of a Gaussian random vector is

well known (see Cover and Thomas 2006 for example) as

H Stþ1jStð Þ ¼ 1

2
ln Dj j þ n

2
ln 2pe ð16Þ

Using the results from ‘‘The process,’’ we find:

H Stð Þ ¼
1

2
ln Rsj j þ

n

2
ln 2pe ð17Þ

Inserting the entropies from Eqs. 16 and 17 into 7 yields:

I Stþ1; Stð Þ ¼ 1

2
ln Rsj j �

1

2
ln Dj j; ð18Þ

which is the entropy of the state minus that of the noise.

Using the additive structure of the noise in Eq. 4, the formula

I Stþ1; Stð Þ ¼ H Stð Þ � HðNÞ

can be inferred in the same manner. Hence, this decom-

position of the PI is a direct consequence of using additive

noise.

Properties

The PI displays a number of interesting properties. Well

known, but especially noteworthy for robotics is the

invariance of the PI against coordinate transformations so

that the PI of a process St is the same as that of a process

QSt for any regular matrix Q. This follows immediately

from I Stþ1; Stð Þ ¼ H Stð Þ � H Stþ1jStð Þ and the fact that

entropies obey

H QStð Þ ¼ H Stð Þ þ ln Qj j ð19Þ

for any regular matrix Q. This also shows that the PI is

independent of the scaling of the variables which is very

convenient for robotics applications.

More specifically, in the system considered, one of the

striking properties of the PI is its preferentially dynamic

nature. This is seen best by considering the special case

that the covariance matrix D commutes with R:

D;R½ � ¼ 0 ð20Þ

This property is always fulfilled if the noise is isotropic,

i.e.,

D ¼ r211 ð21Þ

where 11 is the unit matrix and r2 measures the overall

strength of the noise. In this case, we get the covariance

matrix of the state directly from Eq. 13 as

1 Let Pt denote the distribution of St and let P denote the stationary

distribution. Strong convergence means that
R

f dPt convergence to $
f dP for every bounded measurable function. This implies weak

convergence (also known as convergence in distribution).

166 Theory Biosci. (2012) 131:161–179
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X1

k¼0

RkDRkT ¼ D
X1

k¼0

RkRkT ¼ DM ð22Þ

where M is independent of the noise. Inserting this

expression into Eq. 18, the PI is obtained as

I Stþ1; Stð Þ ¼ 1

2
ln Mj j ¼ 1

2
ln
X1

k¼0

Rk Rk
� �T

�
�
�
�
�

�
�
�
�
�

ð23Þ

which is positive since Mj j[ 1: This is obvious since M is a

sum of non-negative matrices, starting with the unit matrix.

If, moreover, the matrix R is normal (i.e., it commutes with

its transposed RT), we may rearrange the terms of the sum in

Eq. 22 so that it is recognized as a geometric series, yielding

X1

k¼0

Rk Rk
� �T¼

X1

k¼0

RRT
� �k¼ 1

11� RRT
ð24Þ

provided the spectral radius of R is less than one. In this

special case, we obtain the explicit expression for the PI (as

given also in Cover and Thomas 2006)

I Stþ1; Stð Þ ¼ � 1

2
ln 11� RRT
�
�

�
� ð25Þ

The results, Eqs. 23 and 25, show that the PI is

independent of the noise in the isotropic noise case. It is

defined entirely in terms of the dynamical operator R of the

deterministic dynamical system although the PI does not

make sense if there is no noise at all. As will be demonstrated

below, if the noise is anisotropic, the PI displays a

complicated interplay between dynamics and noise leading

to interesting effects in the learning dynamics derived from

maximizing the PI. In particular, we observe a self-organized

frequency sweeping effect under specific conditions.

Arbitrary noise

The extension to general noise and arbitrary R is obtained

in the following way. Using Aj j= Bj j ¼ AB�1
�
�

�
� and the

Lyapunov equation, Eq. 14, we write

Dj j
Rsj j
¼ Rs � RRsR

T
� 	

Rsð Þ�
1
2

� 	2
�
�
�
�

�
�
�
�

¼ 11� Rsð Þ�
1
2 RRsR

T

Rsð Þ�
1
2

� 	�
�
�

�
�
�

Here, we used the invertibility of Rs: Introducing the

whitening operation, see also DelSole (2004),

W ¼ R
�1

2
s RR

1
2
s

we obtain

Dj j
Rsj j
¼ 11�WWT
�
�

�
�

where we used the symmetry of Rs: From Eq. 18 we obtain

the PI also as

I Stþ1; Stð Þ ¼ � 1

2
ln 11�WWT
�
�

�
�: ð26Þ

The PI is now expressed in terms of the so called pre-

whitened dynamical operator W which is a similarity

transform of the bare dynamical operator R obtained by

means of the covariance matrix R of the stochastic process

St (DelSole 2004). This generalizes the expression Eq. 25

to the case of anisotropic noise and arbitrary R in a

straightforward way. However, the problem in this general

case is that the matrix W is obtained only if the covariance

matrix is already known. We will return to that point below

when deriving the learning rules.

Summary

The present section has given explicit expressions for the

PI of linear dynamical systems with additive noise. These

results are partly known already but we present them here

from the perspective of the sensorimotor loop. Remarkable

features of the PI are seen in its invariance against scale

transformations of the state variables which is very con-

venient for robotics applications. With additive noise, the

PI splits additively into a dynamical and a pure noise part,

the latter being irrelevant for the maximization task. The

dynamical part is essentially the entropy of the state vari-

ables which is seen to decouple completely from the noise

if the latter is isotropic. In that case, the PI is defined

entirely in terms of the dynamical operator R of the

deterministic dynamical system, see Eq. 23. The general

case is covered in the same way by pre-whitening the

dynamical operator. These results are encouraging for the

use of the PI in the dynamical systems approach to

robotics.

Example stochastic oscillator

Let us now consider a two-dimensional system to study

pertinent properties of the PI, in particular the interplay

between the controller and the dynamics of the world. By

way of example we consider a system with a damped

oscillation perturbed by noise, i.e., we consider Eq. 9

stþ1 ¼ Rst þ ntþ1

with specific expressions of the dynamical operator R.

Moreover, we put the covariance matrix of the noise as

D ¼ E NNT
� �

¼ r2 1� m 0

0 1þ m


 �

This is sufficiently general since D can always be brought

into a diagonal form by using an orthogonal transformation

of the state vector s. The specific way of writing the
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be derived in the following. We will also put r2 = 1

without loss of generality in the following derivations.

Controlling a random world

Let us start with the case that the deterministic part of the

dynamics is determined by the controller alone, i.e., the

intrinsic world dynamics is pure noise so that T = 0 in

Eq. 10. The controller is linear and deterministic

a ¼ Cs

with controller matrix C chosen as

C ¼ cU /ð Þ

where U is a rotation matrix

U /ð Þ ¼ cos / � sin /
sin / cos /


 �

ð27Þ

Moreover, we assume V ¼ 11 so that the dynamical

operator is

R ¼ cU /ð Þ ð28Þ

The system executes with 0 \ c \ 1 a damped harmonic

oscillation since the state vector is rotated in each time step

by the angle / and compressed by the factor c.

Evaluating the PI

We find Rs from the solution of the discrete Lyapunov

equation (Maple) as

The determinant can be written as

Rsj j ¼ 1� m2

1þ 4c2
/

 !
1

c2 � 1ð Þ2

where

c2
/ ¼

c2 sin2 /

c2 � 1ð Þ2

Rsj j is seen to have minima at / = 0, p, … and maxima at

p/2, 3p/2,… independently of the values of m and c. Using

Dj j ¼ 1� m2 we write the PI as

I Stþ1; Stð Þ ¼ 1

2
ln

Rsj j
1� m2

¼ 1

2
ln

1

c2 � 1ð Þ2
þ 1

2
ln

1� m�2

1� m2

ð29Þ

with

m� ¼ m
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 4c2

/

q ;

which can be considered as some kind of re-scaled noise

asymmetry reflecting the interaction with the dynamics to

reinterpret the result we rewrite this expression in the

following way:

I Stþ1; Stð Þ ¼ 1

2
ln

1

1� RRT

�
�
�
�

�
�
�
�þ

1

2
ln

D�j j
Dj j ð30Þ

¼ Iiso Stþ1; Stð Þ þ 1

2
ln

D�j j
Dj j ð31Þ

where Iiso Stþ1; Stð Þ is the PI with isotropic noise as given in

Eq. 25 and D* is the noise matrix with m replaced by m*.

Equation 30 presents the PI as a term which depends only

on the dynamics of the system, as in the isotropic noise

case, plus a term reflecting the interplay of the dynamics

with the anisotropy of the noise.

The parameter values / that maximizes the PI given by

Eq. 18 coincide with those values that maximize Rsj j; since

the logarithm is a monotonic function and Dj j is a constant.

Because there is no physical difference between two values

of / that differ by a multiple of 2p, there remain two

essentially different values of / that maximize the MI,

namely /1;2 ¼ �p=2: Both describe a period 4 damped

oscillation, the positive value corresponding to a clock-

wise, the negative one to the counterclockwise rotation.

Gradient ascending the PI

The central idea of this article is to consider the PI as an

intrinsic objective for the adaptation of the system towards

increasing PI. A concrete realization of such a gradient

ascent method is described in ‘‘Learning rules—the self-

referential robotic system,’’ below. However, we can

already discuss the adaptation dynamics by gradient

ascending the PI as given by Eq. 30. Let us start with the

frequency parameter / = 0 and change the latter step by

step into the direction of increasing PI. Obviously, this

procedure drives / to larger values until / = p/2 is

Rs ¼
2c2 c2�1ð Þmþ2ð Þ cos2 /þ 1�c4ð Þm� 1þc2ð Þ2

c4�1ð Þ 1þc2ð Þþ4c2 1�c2ð Þ cos2 / �2 cos / sin /ð Þm c2

c2þ1ð Þ2�4c2 cos2 /

�2 cos / sin /ð Þm c2

c2þ1ð Þ2�4c2 cos2 /
� c2þ1ð Þ2�m c4�1ð Þþ2c2 c2�1ð Þm�2ð Þ cos2 /

c4þc6�c2�1þ 4c2 1�c2ð Þ cos2 /ð Þð Þ

0

B
@

1

C
A
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dynamics. We may consider this as a kind of frequency

sweep, driven by the PI maximization dynamics, through

the whole frequency space from frequency zero to the

period 4 oscillation.

Resonance—a case for embodiment

A purely random world, i.e., T = 0, is not the most inter-

esting or typical case. Instead the world will have a

dynamics of its own and the question is how the PI depends

on the interplay between the controller and the world. Let

us consider the special case of a two-dimensional system

with a world dynamics given by an oscillatory system, i.e.,

put T ¼ wU xð Þ and C ¼ cU /ð Þ so that (assuming V ¼ 11

in this section)

R ¼ cU /ð Þ þ wU xð Þ ð32Þ

where U /ð Þ was introduced in Eq. 27 above. We have to

assume, moreover, that c and w are chosen such that the

eigenvalues of RRT are less than 1 so that the PI exists. The

concrete conditions are given in Eq. 34 below.

Isotropic noise

The case of isotropic noise can be considered explicitly in

the special case of two-dimensional systems. We consider

again the series given by Eq. 22, and use the fact that in

Eq. 32 R is a linear combination of unitary matrices and

that all 2 9 2 unitary matrices commute and are normal. In

higher dimensional spaces one can always find subspaces

of commuting matrices so that the argument can partly be

transferred also to the general case. Assuming normality of

R, the PI is given in terms of the operator

11� RRT ¼ 1� lð Þ11 ð33Þ

where using cos /� xð Þ ¼ cos / cos xþ sin / sin x; we

have

l ¼ c2 þ w2 þ 2cw cos /� xð Þ
� �

:

Equation 25 implies

I Stþ1; Stð Þ ¼ � ln 1� lð Þ ð34Þ

where both 0 \ c \ 1 and 0 \ w \ 1. Assuming these

values are such that 1� wþ cð Þ2 [ 0; I exists and is

maximal if / = x, i.e., if the controller is in resonance

with the dynamics of the world.

This can be connected to the idea of embodiment. Our

system (without controller, i.e., C = 0 in Eq. 32) is driven

by the noise into damped oscillations. Now assume that we

switch on the controller and let the latter adapt its

frequency by gradient ascending the PI as sketched

in ‘‘Gradient ascending the predictive information’’ above.

Then, the controller will bring gradually its frequency in

resonance with the intrinsic oscillation of the world without

doing any frequency analysis or the like. This is valid as

long as we keep the strength factor c fixed. The more

general case is considered in ‘‘The resonance effect’’

below.

Anisotropic noise

The preceding scenario requires that the mode is already

active so that it is represented explicitly in the world matrix

T. In many cases of practical interest, modes get excited

only if the controller already insinuates a near-resonance

stimulation. Now, let us consider the case that the matrix

T = 0 in the beginning of an experiment (no latent oscil-

lation excited) and put / = 0. As discussed in ‘‘Gradient

ascending the predictive information’’ above, with even the

slightest anisotropy of the noise, the gradient ascent pro-

cedure increases the rotation angle / (the frequency

sweeping effect).

If, during this sweep, a mode in the world is excited and

the world model, the matrix T in this case, is adapted to

cover this emerging feature sufficiently quickly, the reso-

nance mechanism described above will start dominating

the adaptation so that the controller is driven towards the

intrinsic mode and amplifies the latter to maximum

amplitude.

This mechanism shows not only how the PI maximiza-

tion can lead to an active search of the behavior space but

also how, in this procedure, latent modes of the world can

be brought out. This is an even stronger point for the use of

PI maximization in embodied AI.

Of course, different from the isotropic noise case, this

scenario is not completely free of any sampling require-

ments. In the considered scenarios, we still need the

covariance matrices D and Rs but in cases of practical

interest, a coarse sampling of the latter might turn out

sufficient. This is (weakly) supported by the fact that the

discussed effects, in particular the sweeping and the reso-

nance effect, set in as soon as there is any anisotropy of the

noise at all. So, it would be sufficient to have a very coarse

sampling and start the parameter adaptation process right

from the outset. The sampling can continue during the

information maximization so that, on the fly, the covari-

ance matrices may be improved. A deeper reason may be

seen in the dominance of the properties of the deterministic

dynamical system so that the statistical properties are of

secondary importance. But so far that is more or less

speculation.
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We may also consider the more general case of a larger step

width, i.e., we investigate IðStþs; StÞ: The derivation for the

PI is given in ‘‘Predictive information over several time

steps’’. Most interestingly for our purpose, the landscape is

seen to become more and more complex with increasing s.

Let us consider the special case of the purely random world

and consider the landscape of the PI for a special case, see

Fig. 2 which depicts for the case of c = 0.9 and m = 0.8

the dependence on the rotation angle /. The picture shows

that, instead of the period 4 oscillation observed in the

single time step case, the oscillations with maximum PI are

now of much lower frequency, the frequency decreasing

systematically with increasing s. Moreover, there are also

local maxima at high frequency oscillations but with a much

lower value of the PI for s[ 1.

Summary

This section has considered the application of the PI con-

cept to a specific two-dimensional system, mimicking a

sensorimotor loop with a controller that can excite oscil-

latory motions. The world part (essentially the body of the

robot) of the sensorimotor loop consisted of (i) a pure

noise, and (ii) an oscillatory part of the same dynamical

structure as the controller. We have demonstrated that in

the pure noise case the anisotropy of the noise produces a

frequency sweeping effect, driving the system towards a

period 4 oscillation which is the dynamics with the highest

predictive information. An interesting effect is observed, if

the world is not just white noise but is capable of an

oscillatory dynamics of its own. In that case, the PI is

maximal if the controller is (nearly) in resonance with this

intrinsic mode of the world even in the case that the world

and controller are structurally different. This is encourag-

ing, since maximizing the PI means (at least in this simple

example) to recognize and amplify the latent modes of the

robotic system. This is essentially what we need for the

self-organization of behavior by the maximization of the PI

in the sensorimotor loop.

Learning rules—the self-referential robotic system

The PI is given in terms of the sensor values the robot

produces in the course of time. There is no domain-specific

knowledge invoked into this function. We obtain a self-

referential robotic system when using the PI as the objec-

tive function for the adaptation of the parameters of the

controller. In particular, we may consider the gradient

ascent on the MI

Dp ¼ e
oI St; St�1ð Þ

op
ð35Þ

where p is any parameter of the controller of the robot. In

the present case, this are the matrix elements of the matrix

C. The properties of the self-referential robotic system

depend also on the choice of the learning rate e which

actually has to be chosen small enough so that the time

scales are well separated.

Explicit learning rules for the maximization

of predictive information

Our aim now is the derivation of explicit rules for the

gradient ascent dynamics over the parameter space. Let us

start with the most simple case that the noise is isotropic

and the matrix R is normal, i.e., the commutator

[R, RT] = 0, so that the explicit expression (25) is valid.

We will start with the naive gradient as given in Eq. 35 and

will discover that this is not appropriate in most cases since

the emerging gradient dynamics does not conserve nor-

mality of R. Fortunately, this can be remedied by using the

gradient with respect to a convenient metric. The idea is

given in an intuitive way below and will be substantiated

by introducing the metric in ‘‘Generalized gradient for

obtaining a self-consistent update rule.’’

So, let us consider the naive gradient dynamics for the

matrix C given by

DCij ¼ e
oI St; St�1ð Þ

oCij

leading to the explicit learning rule (see ‘‘Derivation of the

learning rule’’)

ϕτ 2

τ 3

τ 4

2

3

2

0.6

0.8

1

1.2

1.4

I in nats

π π π

Fig. 2 The predictive information over s time steps for the stochastic

oscillator model as a function of the rotation angle / for s = 2

(upper), s = 3 (middle), and s = 4 (lower curve). Instead of the

maximum at p/2 observed for s = 1, there are two global maxima and

one or two local maxima for the case of s = 3 or s = 4, respectively.

The frequency of the oscillations in the global maxima decreases with

increasing s and depends also in a very intricate way on the damping

constant a and the asymmetry of the noise measured by m
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11� RRT
R ð36Þ

Questions of the consistency of the learning rule are dis-

cussed below.

The rule can be used as long as all eigenvalues of RRT

are less than one. This is an immediate consequence of the

fact that the system dynamics is diverging whenever one of

those eigenvalues exceeds one. When using the rule in

practice, a damping term should be added. There are sev-

eral choices possible, in the present case it seems appro-

priate to keep the variances of the state variables at finite

values. This amounts to using

K ¼ I Stþ1; Stð Þ � kTr Rsð Þ ð37Þ

as the new objective function to be maximized. The trace

over Rs can be evaluated from Eq. 13 by elementary

means. In the case of isotropic noise we get the rule, see

‘‘Derivation of the learning rule’’,

DC ¼ eVT 1

11� RRTð Þ2
c11� RRT
� �

R ð38Þ

where c ¼ 1� k
e

� �
and 0\k\e: The gradient dynamics is

stationary if

RRT ¼ c11 or c�
1
2R

� 	
c�

1
2R

� 	T

¼ 11 ð39Þ

hence c�
1
2R

� 	
is an orthogonal matrix. In the stationary

case, the PI becomes

I Stþ1; Stð Þ ¼ 1

2
ln

e
k

ð40Þ

Hence, in the sequence of update steps, the dynamical

matrix R converges towards an orthogonal matrix multi-

plied by
ffiffiffi
c
p
; the limit of the MI depending only on the ratio

of k and e.

Consistency

The derivation of the learning rule (38) is based on two

critical assumptions:

1. the noise is isotropic (more generally, D commutes

with the matrix R, compare Eqs. (20, 21))

2. the matrix R is normal, i.e., [R,RT] = 0 (see Eq. 25).

The learning rule is consistent, if the freshly learned policy

matrix C leads to a transformation matrix R that is normal.

Unfortunately, this is not the case if the update rule (38) is

used, in other words

½ Rþ DRð Þ; Rþ DRð ÞT � 6¼ 0 in general ð41Þ

To see this, note that the update rule (38), together with

DR ¼ VDC; leads to a change DR of R which is given by

DR ¼ VVT e
11� RRT

R

If ½VVT ;R� ¼ 0; the commutator in Eq. 41 vanishes

indeed so that the normality of R is conserved by the

learning dynamics under the given conditions. However,

if ½VVT ;R� 6¼ 0 consistency is not guaranteed. We will

solve this problem by modifying the learning rule (38).

As a first step we consider I ¼ IðSt; St�1Þ as a function of

R and define

fDR ¼ e
oI

oR
¼ e

11� RRT
R ð42Þ

This defines a dynamics in R space that conserves

normality of R as is immediately proven by evaluating

the commutator in Eq. 41. The essential point now is to

find a rule for changing C such that we obtain fDR as given

by Eq. 42. Using R = VC ? T, this means to define the

change fDC of C such that

fDR ¼ V fDC

We want to ensure that each change fDR is feasible by

changing C. Let us assume from here on that V�1 exists.

Then we define fDC as fDC ¼ V�1 fDR: As a result, we

obtain the new learning rule

fDC ¼ eV�1 1

11� RRT
R ð43Þ

and correspondingly with damping

fDC ¼ eV�1 1

11� RRTð Þ2
c11� RRT
� �

R ð44Þ

With this consistent update rule normality of R is

automatically conserved. Note that the consistent learning

rule (44) involves a multiplication by a factor V-1 (unlike

the naive learning rule (38) that involves a factor VT).

However, the stationarity condition

c11 ¼ RRT ð45Þ

is immediately seen to agree with Eq. 39. As we will show in

‘‘Generalized gradient for obtaining a self-consistent update

rule,’’ the change fDC can be obtained as the gradient of the

pertinent objective function (involving both the MI and the

penalty term) with respect to some non-standard metric on

the set of square matrices. As will be shown, this metric turns

out to be the pull-back metric of the standard metric with

respect to the map C 7!VC þ T : This new metric also better

reflects the symmetry of the problem. As can be inferred

from Eq. 25, the PI is invariant with respect to conjugation of

R with an orthogonal matrix O:

R 7!OROT
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�; �h i in R space (compare ‘‘Generalized gradient for

obtaining a self-consistent update rule’’). Using the pull-

back of �; �h i as a metric on the space of controller matrices

C ensures that whenever C1 and C2 are dynamically

equivalent in the sense that they lead to conjugate values R1

and R2, they have the same norm.

The resonance effect

The result already reveals a specific feature of the predic-

tive information maximization paradigm. As is obvious

from the stationarity condition Eq. 45, the gradient

dynamics will converge towards some orthogonal matrix

depending on the initial conditions and the values of the

parameters e and k. This can be made more explicit in our

specific resonance example. By virtue of Eq. 33 we find in

this case, using RRT ¼ l11 and l ¼ c2 þ w2 þ
2cw cos /� xð Þ that the condition of stationarity can be

written as

c2 þ w2 þ 2cw cos /� xð Þ ¼ 1� k
e

with infinitely many solutions for c and / realizing the

same value of the PI.

This is a little disappointing since there is no pro-

nounced resonance behavior any more. The resonance

observed in ‘‘Resonance—a case for embodiment’’ was

obtained with / as the only parameter. We have seen there

that maximizing the PI drives / until the controller is in

resonance with the external oscillation inherent in the

matrix T. The present result shows that the strength and the

frequency parameter, if driven both by the gradient ascent,

heavily interfere with each other. Moreover, the resonance

effect is less dominant than the drive for increasing c, so

that the latter dominates the gradient dynamics in param-

eter space. As a results, the convergence of / is stopped

before it reaches the resonance frequency. Overall, this

means that the resonance phenomenon does not disappear

altogether but that it is not complete.

The general case

The above results have been obtained under the proviso

that the matrix R obeys the commutation property RRT ¼
RT R and the noise is isotropic so that the PI is expressed by

Eq. 25. If these conditions do not hold, we have to use the

general expression given by Eq. 26 for the PI

I Stþ1; Stð Þ ¼ � 1

2
ln 11�WWT
�
�

�
� ð46Þ

The difference to the special case consists of the

replacement of R by W. However, this does not mean

that we can simply replace R by W also in the learning rules

since

W ¼ R
�1

2
s RR

1
2
s ð47Þ

with Rs depending on R, too. We now proceed as above,

finding at first the gradient in the space of matrices R and

afterward relate that to the C space.

The gradient oI=oR is obtained by the chain rule in two

steps. First of all we derive the (canonical) gradient of I

with respect to W using Eq. 60 from ‘‘Derivation of the

learning rule’’:

oI

oW
¼ 1

11�WWT
W ð48Þ

The gradient of W with respect to R is tricky since Rs

depends on R. It is possible to derive a power series in R

but the resulting expression is rather complicated and

unwieldy for computation. Therefore, using Eq. 47 and

ignoring, in a rough approximation, the dependence of Rs

on R, we get:

oWij

oRkl
	
X

mn

R
�1

2
s

� 	

im

oRmn

oRkl
R

1
2
s

� 	

nj
¼ R

�1
2

s

� 	

ik
R

1
2
s

� 	

lj

so that (using that Rs is symmetric)

oI

oRkl
¼
X

ij

oI

oWij

oWij

oRkl
	 R

�1
2

s
1

11�WWT
WR

1
2
s


 �

kl

Introducing

R̂ :¼ R
�1

2
s WR

1
2
s ¼ R�1

s RRs

we also obtain

oI

oR
	 1

11� R̂RT
R̂:

We again have to decide about the metric on the space of

policy matrices. In order to achieve consistency with the

anisotropic noise case considered in the last section, we

follow the same arguments that lead from Eq. 42 to 432 and

define

DC :¼ eV�1 1

11� R̂RT
R̂: ð49Þ

This expression generalizes Eq. 43 to the case of aniso-

tropic noise and arbitrary R but is valid only approxi-

mately. We nevertheless include the result here with the

hope that this might be a start for later developments

coping with the missing terms.

In ‘‘Consistency,’’ we argued that the standard metric on

the space of transformation matrices R is a good choice

2 This boils down to using the pull-back metric on the space of policy

matrices again (compare with Eq. 71 from ‘‘Generalized gradient for

obtaining a self-consistent update rule’’ in Appendix).
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symmetry is broken if the noise is anisotropic. In this case,

the PI is invariant with respect to conjugation of both R and

D with the same orthogonal matrix O:

R 7!OROT and D 7!ODOT ð50Þ

Instead of using the standard metric on the space of

dynamical matrices R as we did before, one could equip

this space with a metric that represents the symmetry

better, as for example

~gðX; YÞ ¼ n

TrD
Tr XT YD
� �

:

The appropriate metric on the space of controller matrices

would be f �~g in this case (for notation and concepts see

‘‘Generalized gradient for obtaining a self-consistent

update rule’’ in Appendix).

The Hebbian nature of the learning rule

The learning rule can be rewritten in many different forms.

This section intends to show that there is a close relation-

ship between the derived learning rules and Hebbian

learning as we know it from neural networks. Moreover,

we will also show how under specific conditions the matrix

inversion can be avoided altogether.

Stochastic gradient ascent rule

Let us first consider the special case of normal matrices R

and isotropic noise and assume that VVT commutes with R.

Using Eq. 22 and D ¼ r211; we have 11� RRTð Þ�1¼
RsD

�1 so that the learning rule can be written as

DC ¼ eVTRsR ð51Þ

where r2 is absorbed into e: The covariance matrix Rs of

the state variables can, in the sense of a stochastic gradient

procedure, be invoked into the algorithm if the learning

rate e is chosen small enough. The covariance matrix Rs

can approximately be obtained as a time average of sts
T
t in

a finite time window. This averaging procedure is done

implicitly by the update rule

DCt ¼
e
N

VT sts
T
t R ð52Þ

where N defines the length of the time window (note that N

update steps realize one update step in Eq. 51, i.e.,

DC 	
P

1
 t
N DCt). This may be helpful in practical

applications since it does not involve any matrix inversion,

the update being fully determined by the current value of

the state vector st.

The case of general matrices V can be treated as above

by simply replacing VT by V-1.

Hebbian learning

The above rule can be still further modified to make a

connection to neural network learning paradigms. Let us

introduce the new vectors est ¼ RT st and eat ¼ VTst: In

terms of these states, we write the learning rule (52) as

(omitting time indices)

DCij ¼
e
N
eaiesj ð53Þ

If VVT does not commute with R, the consistent update rule

should be used as explained in ‘‘Consistency.’’ In this case

eat has to be defined by eat ¼ V�1st instead.

We may consider Cij as the synaptic strength of a linear

neuron. Interpreting eai as signal at the output of the neuron

i and esj as an input into the synapse, the learning rule is

now clearly Hebbian, since the update for the synapse is

given by the product of activities being available directly at

the corresponding ports.

The analogy can be made even closer if we relate this

Hebbian learning rules to the error back propagation

methods which are central in the learning theory of layered

feed forward neural networks. For this purpose, we con-

sider the combination of the controller matrix C and the

world matrix V as a two-layer neural network of linear

neurons. We consider the dynamics (T = 0)

stþ1 ¼ Vat þ ntþ1

with at = Cst, and interpret Va as the output of the top

layer of the network so that

Vað Þi¼ g
X

j

Vijaj

 !

with a linear output function g(z) = z. The controller can

also be represented as a neural network

aj ¼ g
X

k

Cjksk

 !

so that the deterministic part Rst of the full dynamics

stþ1 ¼ Rst þ ntþ1 can be written as a two-layer neural

network

Rsð Þi¼ g
X

j

Vijaj

 !

¼ g
X

j

Vijg
X

k

Cjksk

 ! !

The error backpropagation rule allows to propagate a

signal at the output of the network back to the lower layers

and finally to the input of the network. Propagating

st, according to that rule, from the output of the network

(top layer) back to the output of the controller (bottom

layer) yields

eatð Þi¼ VT stþ1

� �
i

which, in the learning step, Eq. 53, features as the output
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down to the input of the network yields

estð Þj¼ CT eat

� �
j
¼ RT st

� �

which is the input signal into the synapse Cij in the learning

step, see Eq. 53.

Again, if the matrix V VT does not commute with R, we

have to replace eatð Þ by

eatð Þi¼ V�1stþ1

� �
i

so that we do not have simple backpropagation. Instead,

this operation defining eat may be called a backprojection of

the state st?1 through the world model given by V, back to

the output of the controller. It is interesting that the tran-

sition from backpropagation to backprojection is a result of

modifying the metric in matrix space and we will come

back to that result in a later article (Ay et al. 2011).

Summary

The aim of ‘‘Learning rules—the self-referential robotic

system’’ is the derivation of explicit learning rules for the

maximization of the PI. In our specific case of linear systems,

we derive an explicit update rule for the matrix C of the

controller. The essential point is that, in the case of isotropic

noise at least, the rule is of a completely dynamical nature so

that no sampling is necessary at all. Instead, the response

matrix V and the world matrix T have to be learned, but this is

a supervised learning task which is easy to achieve. More-

over, the learning rule is transformed into a purely local form,

see Eq. 52, so that no matrix inversions are necessary. This is

of much interest from the practical point of view.

We discuss several penalty terms (which are necessary in

the case of linear systems) and demonstrate that the inherent

contingency of behaviors emerging from PI maximization

gives the opportunity to influence the course of the learning

process by appropriate penalty terms. In particular, the res-

onance effect is partly reestablished for more general

parameterizations of the controller. This supports our point

of view that the PI maximization makes the robot ‘‘feel’’

latent behavioral modes, in the special case the existence of

an oscillatory regime, corresponding, for example, to a

locomotion pattern. Maximizing the PI via the learning

mechanism leads to the recognition and amplification of that

mode. This may also be understood as a kind of self-moti-

vated exploration of bodily affordances of embodied robots.

Conclusions

Can a robot develop its skills completely on its own, driven

by the sole objective to gain more and more information

about its body and its interaction with the world? This

question raises immediately further questions such as (i)

what is the relevant information for the robot and (ii) how

can one find a convenient learning rule that realizes the

gradient ascent on this information measure. We have

studied the PI contained in the stream of sensor values as a

tentative answer to the first question and, based on that,

could give exact answers to the second question for simple

cases. We had to limit the investigation to the case of linear

controllers and sensor responses to get exact analytical

results. Nevertheless, already in such a linear world there

are several effects which demonstrate the value of the

information maximization principle. In particular, we could

show that the (anisotropic) noise makes the system to

explore its behavior space in a systematic manner, in the

present case the PI maximization made the controller of a

stochastic oscillator system to sweep through the space of

available frequencies. More importantly, if the world the

controller is interacting with is hosting a latent oscillation,

the controller will learn by PI maximization to go into

resonance with this intrinsic mode of the world. This is

encouraging, since maximizing the PI means (at least in

this simple example) to recognize and amplify the latent

modes of the robotic system. In a sense, by PI maximiza-

tion the robot is able to detect its bodily affordances.

In the special case of isotropic noise the PI maximiza-

tion principle lead to simple learning rules which can be

given a purely local formulation. In fact, it needs only

standard backpropagation together with a Hebbian learning

step. There is no need for sampling or doing any non-local

operations. Of course, this is a result of the linearity of the

system and the isotropy of the noise. However, our pre-

liminary results with non-linear systems indicate that a

similar structure can be achieved also in the general case, at

least in approximations (Ay et al. 2011). This may help to

bridge the gap between standard neural network realiza-

tions (with supervised learning) which are so successful in

robotics and the information-theoretic methods which so

far are based on discretization and burdened with high

sampling efforts and involved learning rules. Hopefully,

our results will help to pave the way for the application of

information-theoretic methods as a reliable tool for the

self-determined development of the behavior of complex

autonomous robots. Moreover, the approach may lead to

concrete realizations of concepts relevant for truly auton-

omous robots, such as intrinsic motivation and artificial

curiosity.
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Appendix

Here, we derive some results used in the text.

PI over several time steps

In order to find the PI over s time steps, we need the

conditional entropy H stþsjstð Þ of st?s given st which is well

known, see, for example, DelSol (2004). We rederive it

here by elementary means from our previous results,

starting with Eq. 12 to obtain

Rstþsjt ¼
Xs�1

k¼0

RkDRkT ¼
X1

k¼0

RkDRkT �
X1

k¼s

RkDRkT

¼
X1

k¼0

RkDRkT � Rs
X1

k¼0

RkDRkT

RsT

Hence, we find

Rstþsjt ¼ Rs � RsRsR
sT

Noting that the entropy does not depend on the mean, we

find

H StþsjStð Þ ¼ 1

2
ln Rstþsjt

�
�
�

�
�
�þ n

2
ln 2pe ð54Þ

so that

I Stþs; Stð Þ ¼ 1

2
ln

Rsj j
Rstþsjt

�
�
�

�
�
�

ð55Þ

In analogy to the derivation of Eq. 26 we rewrite this as

I Stþs; Stð Þ ¼ � 1

2
ln 11�WsW

T
s

�
�

�
� ð56Þ

with the pre-whitened operator

Ws ¼ R
�1

2
s RsR

1
2
s ð57Þ

Derivation of the learning rule

We use the well-known formula for the derivative of the

determinant Xj j of a regular matrix X (see for example

Magnus and Neudecker 1988):
o

oXij
Xj j ¼ Xj j X�1

� �
ji

The chain rule implies
o

oXij
ln Xj j ¼ 1

Xj j
o

oXij
Xj j ¼ X�1

� �
ji

ð58Þ

or more compactly

o

oX
ln Xj j ¼ 1

XT

If Y is a matrix-valued, differentiable function of X and f is

a real-valued, differentiable function we get by the chain

rule:

o

oXij
f Y Xð Þð Þ ¼

X

k;l

oYkl

oXij

o

oYkl
f Y Xð Þð Þ

Rewriting the contraction over k and l as a trace, the chain

rule for matrices reads as:

of Yð Þ
oXij

Xð Þ ¼ Tr
oYT

oXij
Xð Þ of

oY
YðXÞð Þ


 �

or more compactly

of YðXÞð Þ
oX

¼ Tr
oYT

oX

of Yð Þ
oY


 �

ð59Þ

It is also useful to remember that

Tr A
oX

oXij


 �

¼ Aji; Tr A
oXT

oXij


 �

¼ Aij

or more symbolically

Tr A
oX

oX


 �

¼ AT ; Tr A
oXT

oX


 �

¼ A

Using Eq. 58 and putting Q ¼ 11� RRT we find (exploiting

the symmetry of Q)

� o

oR
ln Qj j ¼ Tr

o RRTð Þ
oR

1

QT


 �

¼ Tr
1

QT

oR

oR
RT


 �

þ Tr
1

QT
R

oRT

oR


 �

¼ 2
1

Q
R

and

� 1

2

o

oR
ln 11� RRT
�
�

�
� ¼ 1

11� RRT
R ð60Þ

Remembering R(C) = VC ? T and using the chain

rule (59) again, we get for an arbitrary real-valued

function f:

of ðRðCÞÞ
oC

¼ Tr
oRT

oC

of

oR


 �

¼ Tr
oCT

oC
VT of

oR


 �

¼ VT of

oR

ð61Þ

Hence

� 1

2

o

oC
ln 11� RRT
�
�

�
� ¼ VT 1

11� RRT
R ð62Þ
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following way. With isotropic noise and assuming as

above that RRT = RTR we have to consider3

o

oR
Tr

1

11� RRT


 �

¼ 2Tr
1

11� RRT

oR

oR
RT 1

11� RRT


 �

¼ 2
1

11� RRTð Þ2
R

ð63Þ

so that the gradient descent step yields (absorbing factors

into k)

DC ¼ eVT 1

11� RRT
R� kVT 1

11� RRTð Þ2
R

¼ eVT 1

11� RRT
11� k

e
1

11� RRT


 �

R

ð64Þ

which is easily transformed into that of the text using

c ¼ 1� k
e :

Generalized gradient for obtaining a self-consistent

update rule

In this part of the appendix we will investigate the math-

ematical background of the consistent update rule (44) of

the controller matrix C found in ‘‘Consistency.’’ We will

show that the consistent update rule is also a gradient

ascent algorithm, where the gradient is taken with respect

to some non-standard metric on the differentiable manifold

of n 9 n matrices, denoted by M(n). We will further

characterize this metric as the pull-back of the standard

metric under the map that links the value of the controller

matrix C to the dynamical matrix R:

f : MðnÞ ! MðnÞ; C 7!R :¼ VC þ T : ð65Þ

As in ‘‘Consistency’’ we will consider systems with

V being a non-singular square matrix only.

Furthermore, we will introduce a general class of met-

rics on matrix spaces that contains the standard metric, our

pull-back metric as well as the right-invariant metric on the

space of invertible matrices used for example by Amari

(compare Amari 1998). These results can be used to

modify gradients of matrix functions in various ways

without changing the stationary points of the learning

algorithms. We provide an explicit formula for the gradient

with respect to a metric from this class. We hope that this

might be useful to modify learning algorithms on matrix

spaces.

In this section we assume some familiarity with basic

differential geometric concepts (as can be found in any

introductory book on differential geometry such as Spivak

1999, Willmor 1959, Kühnel 2006, or Kobayashi and

Nomizu 1963).

As stated above we are considering the differentiable

manifold M(n) of all n 9 n matrices. The only chart we

want to use here is the most obvious choice (in order to be

consistent with the usual notation of differential geometry

we write upper indices for the matrix entries here):

/ði;jÞ : MðnÞ ! R; X 7!Xi;j

In the following summation will always be carried out

over pairs of indices consisting of one upper and one lower

index. In other cases the summation sign will be written

down explicitly. A metric is a positive-definite, symmetric

(differentiable) bilinear form

gp : TpMðnÞ � TpMðnÞ ! R; p 2 MðnÞ

The coefficients of the metric tensor with respect to the

chart /(i,j) are:

gp; i;jð Þ; k;lð Þ ¼ gp e i;jð Þ p

�
� ; e k;lð Þ p

�
�� �

The metric gives rise to a gradient of a function h, denoted

by gradg h½ �ðpÞ 2 TpMðnÞ: The gradient points into the

direction of the steepest ascent of the function h at this

point and its length is equal to Dpf ðpÞ ê½ �
�
�

�
�; where ê is the

unit vector pointing into this direction. So the definition of

the gradient involves metric structures on both spaces:

– on R (which is canonically given; even a change of

metric does not influence the direction of the gradient

since two metrics at a certain point p 2 R differ by a

constant multiple only)

– on M to specify the unit-sphere in the tangent space Tp

M over which the maximization is carried out.

An equivalent definition requires the gradient

gradg f½ �ðpÞ to be the unique vector v 2 TpM such that:

8w 2 TpM : ðDphÞ v½ � ¼ gp v;wð Þ ð66Þ

The components of the gradient are:

gradg h½ �ðpÞði;jÞ ¼ gp
ði;jÞ;ðk;lÞoðk;lÞh pð Þ

where gp
(i,j),(k,l) denotes the inverse n2 9 n2 matrix of

gp;ði;jÞ;ðk;lÞ
� �

ði;jÞ;ðk;lÞ: Since M(n) is a linear space, it is most

natural to identify the tangent space at a given point p 2
MðnÞ with M(n) itself. The canonical scalar product is then

given by

X; Yh ip:¼ TrXT Y :

It implies the standard notion of a gradient in R
ðn2Þ :

3 Use the rule for the derivative of a matrix inverse with respect to

some parameter p

o

op
B�1 ¼ �B�1 oB

op
B�1
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ygrad �;�h i f½ �ðpÞði;jÞ ¼ dði;jÞ;ðk;lÞoðk;lÞf pð Þ ¼ of

oXði;jÞ
pð Þ

Consider the problem of consistency in ‘‘Consistency’’

again. In order to find the optimal parameter for the policy

matrix C we would like to implement some learning

algorithm of the form

Cnþ1 ¼ Cn þ DCn:

By changing C the transformation matrix R is changed

indirectly so we have Rn :¼ f ðCnÞ (where f has been

defined in equation 65). For consistency, DCn has to be

chosen such that the following two conditions hold:

1. 11� RnRT
n is invertible for every n

2. the matrices Rn and RT
n commute for every n, i.e., Rn is

normal.

The first point is easily fulfilled, since the set of

invertible matrices is open in M(n). To see this, let R be an

invertible matrix, and let DR be a matrix with

DRk k\ R�1
�
�

�
��1

: Then an inversion in terms of the von-

Neumann series shows that Rþ DR is also invertible, and:

Rþ DRð Þ�1¼
X1

k¼0

R�1DR
� �k

R�1

Hence, a sufficiently small learning rate ensures the

validity of point one.

The second point is more subtle. The set of normal

matrices is the algebraic set A 2 MðnÞ AAT � AT A ¼ 0jf g:4
Considering both the MI term and the penalty term (compare

Eqs. 37 and 25), the objective function to be maximized is

KðRÞ :¼ � ln 11� RRT
�
�

�
�� kTr

1

11� RRT


 �

for appropriate constants k and �: As shown in ‘‘Derivation

of the learning rule’’ (see Eqs. 60 and 63), the gradient with

respect to R becomes:

grad �;�h i K½ �ðRÞ ¼ � 1

11� RRT
R� k

1

11� RRTð Þ2
R:

Notably the gradient commutes with R and RT whenever R

is normal. Hence an update rule of the form

Rnþ1 ¼ Rn þ grad �;�h i K½ �ðRnÞ ð67Þ

preserves normality—Rnþ1 is normal whenever Rn is

normal. However a naive update of C using the usual

gradient might very well destroy normality of Rnþ1: In

order to overcome this problem we make use of the

freedom to use another metric for the calculation of the

gradient (compare Amari 1998). We summarize some well-

known facts about the pull-back of a one-form. Let h :

M ! N be a differentiable map between manifolds and let

g be a metric on N then the pull-back of g under h is

defined by

ðh�gÞpðX; YÞ ¼ gf ðpÞðDpf X½ �;Dpf Y½ �Þ:

If h is a diffeomorphism, i.e., it is invertible with differ-

entiable inverse, then the pull-back has the following

properties:

– h�g is a metric on M (i.e., it is a positive definite,

symmetric two-form on M)

– Let / : N ! R be a differentiable function. According

to the definition of concatenation and according to the

chain rule the following two diagrams commute:

Using the definition of the gradient Eq. 66, the follow-

ing formula is valid for any v 2 TpM :

Dp / � hð Þ v½ � ¼ h�gp gradh�g / � h½ �ðpÞ; v
� �

¼ ghðpÞ Dph gradh�g / � h½ �ðpÞ
 �

;Dph v½ �
� �

;

ð68Þ

Using the relationship Dp / � hð Þ v½ � ¼ Df ðpÞð/Þ Dp hð Þ v½ �
 �

;

the left-hand side of Eq. 68 can also be written in the

following way:

Dp / � hð Þ v½ � ¼ ghðpÞ gradg /½ � hðpÞð Þ;Dph v½ �
� �

:

Since Dp h is non-singular this implies:

gradg /½ � hðpÞð Þ ¼ Dph gradh�g / � h½ �ðpÞ
 �

ð69Þ

In our case, consider the map f defined in Eq. 65. Its

differential is simply:

Dpf : MðnÞ ! MðnÞ; X 7!VX ð70Þ

Since f is affine, Dpf even maps finite changes of C to the

corresponding finite changes of R. The idea is to start with

a matrix C0 such that R0 ¼ f ðC0Þ is normal and to update

every Cn such that the change DCn :¼ Cnþ1 � Cn causes

indirectly the desired change DRn ¼ grad �;�h i K½ �ðRnÞ given

4 The normal matrices are not a differentiable submanifold of ðn2Þ as

one might think at first glance. Actually the dimension of the tangent

space at a certain point (realized by the set of all matrices X 2 MðnÞ
that do not change the commutator in first order, i.e.,

Rþ hX;RT þ hXT½ � ¼ Oðh2Þ or X;RT½ � ¼ � X;RT½ �T ) depends on R.

To see that assume R to be symmetric, and assume that R has

eigenvalues given by the n - tuple ðk1; k2; . . .; knÞ: Then the

dimension of the tangent space is n2 minus the number of pairs of

indices (i, j) with i \ j and ki 6¼ kj: The minimal dimension of the

tangent space is n � ðnþ 1Þ=2; achieved for matrices with n pairwise

different eigenvalues, whereas the maximal dimension is n2, achieved

for multiples of the identity.
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metric:

g :¼ f � �; �h i ð71Þ

Indeed Eq. 69 gives in our case

grad �;�h i K½ � Rnð Þ ¼ DCn
fð Þ gradg K � f½ � Cnð Þ
 �

Inserting the explicit value of the differential into the

definition of the pull-back metric gives:

gðX; YÞ ¼ Tr XTVT VY
� �

A short calculation yields the metric tensor

gði;jÞ;ðk;lÞ ¼ ðVT VÞi;kdj;l

And its inverse:

gði;jÞ;ðk;lÞ ¼ ðVT VÞ�1
� 	i;k

dj;l

Therefore, we have

gradg ¼
1

VT V
grad �;�h i

Using Eq. 64 the update rule for C becomes:

Cnþ1 ¼ Cn þ �V�1 1

11� RnRn
T

11� k
�

1

11� RnRn
T


 �

Rn

This is exactly the consistent update rule derived

in ‘‘Consistency.’’ Since the pull-back metric is the only

metric that makes f an isometry, it is the natural choice to

transfer metric properties from R space to C space. The

pull-back metric lies in a certain class of metrics that we

would like to present now. Note that the two-form

g0ðX; YÞp ¼ Tr GðpÞXT HðpÞY
� �

ð72Þ

is a scalar product if for each p 2 MðnÞ the matrices G(p)

and H(p) are strictly positive (bilinearity is trivial, to see

symmetry use the transposition invariance and the cyclic

invariance of the trace, to see positivity and non-degener-

acy write G(p) and H(p) as the square of a real symmetric

matrix and notice that TrXT X is zero if and only if X = 0.)5

A similar calculation as carried out for the pull-back

metric before yields the following expression for the

gradient:

gradg0 f½ �ðpÞ ¼ HðpÞ�1
grad �;�h i f½ �ðpÞ
� 	

GðpÞ�1: ð73Þ

Obviously the standard metric and our pull-back metric are

members of this class (they are obviously flat since there is

no point dependence of the metric coefficients in the

standard chart). Another example is the right invariant

metric on the set of invertible matrices, GL(n), considered

for example by Amari (1998):

hðX; YÞW ¼ Tr W�1T XT YW�1
� �

Here, we have HðWÞ ¼ 11; G(W) = W-1 W-1T and

therefore:

gradh f½ � ¼ grad �;�h i f½ �
� 	

WT W

Equations 72 and 73 are useful to modify the canonical

gradient. As a consequence, a multiplication of the gradient

by (possibly point-dependent) positive matrices from the

left and from the right does not change the nature of the

problem. Mathematically it is equivalent to a change of

metric on the underlying space M(n). This modification of

the standard gradient can be done with several aims in

mind, for example:

1. to simplify the standard gradient;

2. to eliminate unfeasible quantities that appear in the

standard gradient;

3. to maintain some given constraints (such as normality

of R in our case);

4. to make use of a further mathematical structure

underlying the given problem, such as symmetries or

invariance properties.
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