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Abstract

We propose a novel approach to learning in autonomous
robots that relies on the dynamical maintenance of an actively
sensitized sensorimotor loop. Very weak learning cues are
sufficient to orient a robot towards the desired behavior which
is then selected from the intrinsic exploratory movements
rather than imposed by a control command. The learning
paradigm is a form of guided self-organization and is comple-
mentary to both active and intrinsically motivated learning.
We present a systematic analysis of the learning algorithm in
a robot control task and demonstrate its remarkable scalabil-
ity with respect to the degrees of freedom of the system.

Introduction
Learning in autonomous agents implies an active involve-
ment of the agent in the acquisition of new behavior. Lopez
and Oudeyer (2010) ask for a unified formalism for ac-
tive and intrinsically motivated exploration and observe
a convergence of approaches from machine learning and
developmental psychology towards a new perspective for
developmental robotics. While a number of examples exist
that impressively demonstrate the virtues of this view, it ap-
pears that a different sets assumptions are required that may
eventually turn out to limit the possibility of on-going learn-
ing, scaling and transfer across domains. Since a more ex-
tended discussion is beyond the present scope we should
mention here merely that the present approach aims at a re-
laxation of some of these assumptions. We will use only a
local world model

While some variants of intrinsically motivated learning
try to extract controllable options (Singh et al., 2004; Mar-
tius et al., 2008; Jung et al., 2011) we will use here a re-
lated approach (Martius and Herrmann, 2010) in order to
improve the sensitivity with respect to given learning signals
(cues). We implement in this way a form of self-organized
curiosity (Schmidhuber, 1991; Herrmann, 2001) for the cues
which substantially improves goal-related learning in an au-
tonomous robot. We will show examples where the learning
time within this approach scales very nicely with the com-
plexity of the problem.

We start from an approach to self-organization of robot
control (Der, 2001; Martius et al., 2011) which aims at
robotic behaviors that are characterized by on-going explo-
ration and that can be called natural for a specific robot
in a particular environment (Der et al., 2006; Hesse et al.,
2009). Animals, including humans, can be assumed to ac-
quire their behavioral repertoire in a similar way: Behavioral
elements are developed autonomously and are composed
and refined later in order to realize more complex goals. The
resulting behavior is, nevertheless, subject to an on-going
developmental modulation throughout the whole life span.

In robotics, many promising examples for autonomous
behavioral adaptation and generation have been studied for
instance by Herrmann (2001); Tani (2003); Der et al. (2006);
Nolfi (2006); Oudeyer et al. (2005). Self-organization of
behavior is, nevertheless, still a field of active exploration.
Further questions such as the interaction of learning by self-
organization and learning by supervision or by external re-
inforcement are just starting to gain scientific interest.

Usually, goal-oriented behavior is achieved by direct opti-
mization of the parameters of a control program such that the
goal is approached more closely. The learning system must
receive information about whether or not the behavior actu-
ally approaches the goal. This information may be available
via a reward signal in reinforcement learning or by a fitness
function in evolutionary algorithms. We will consider simi-
lar types of goal-related information when aiming at a com-
bination of self-organizing control with external drives.For
this combination the termguided self-organization(GSO)
was proposed by Martius et al. (2007); Prokopenko (2009).
In a general perspective, GSO is the combination of goal-
oriented learning and developmental self-organization. Each
of the two learning paradigms bring about their particular
benefits and GSO aims at combining them in an optimal
manner. For instance, self-organizing systems tend to havea
high tolerance against failures and degrade gracefully, which
is also desirable in task-oriented applications. when devel-
oping systems aiming to achieve tasks in practical appli-
cations. We will deal in with a specific approach to self-
organizing control, namely homeokinetic learning.



Homeokinetic learninggenerates self-organized behavior
which can serve as intrinsic motivation of the robot to be-
come engaged with its environment. The robot learns to
maintain an active low-level sensorimotor loop without ab-
stract or specific information. Here we will study the possi-
bility of including high-level information into this dynami-
cal systems approach such that the robot can learn to reach
a goal or to optimize its behavior according to external stan-
dards.

What can we expect from aguided homeokinetic con-
troller? It has been shown earlier by Der et al. (2006) and
Hesse et al. (2009) that a variety of behaviors can emerge
from the principle of homeokinesis. The emerging behav-
iors show a coherent sensorimotor dynamics of the partic-
ular robot in its environment. With additional guidance
the exploration of the homeokinetic controller can be chan-
neled around desired or preferred behaviors such that control
modes can be quickly found which match the given robotic
task.

The behavior is essentially driven by intrinsic self-
organization, while the goal is easily taken up by the system
due to the optimal sensitivity of the homeokinetic control.
In a sense, we are not considering here an approach to robot
learning but rather an on-going dynamic realization of the
(external or internal) hints as part of an exploratory regime.

In the present paper, we will advance our study of guided
self-organization of behavior, presented in Martius and Her-
rmann (2010), by an application to a high-dimensional sys-
tem. In order to keep the paper self-consistent, we introduce
the homeokinetic control principle in the next section and
present then the guidance by supervisedteaching cues. The
latter are the basis for the guidance by cross-motor teaching
that can be implemented by the specification of abstract mo-
tor relations. We will extend this framework and apply it to
the locomotion of bracelet-like robots with up to 40 DoF.

Self-Organized Closed-Loop Control
Self-organizing control for autonomous robots can be
achieved by an intrinsic drive towards active and predictable
behavior as described by the homeokinetic principle (Der,
2001). We assume that the dynamics of the sensor values
x ∈ R

n of the robot can be written as

xt+1 = ψ(xt) + ξt+1 (1)

whereψ is the internal model maintained and adapted by the
robot to predict future sensor values andξ is the prediction
error. The motor values (actions)y ∈ R

m are generated
by a controller implemented simply as a parametric map or
one-layer neural network:

yt = K (xt, Ct) = g (Ctxt + ht) (2)

whereg(·) is a sigmoid function withgi(z) = tanh(zi). The
controller parametersC consist of a weight matrixC and a

bias vectorh. We compose the mapψ from a forward model
M(x, y,A) and the controllerK(x, C) (Eq. 2) as

ψ(xt) =M(xt, yt,At) =M(xt,K(xt, Ct),A). (3)

The functionM is initially unknown, but the robot adapts it
continuously in order to minimize the prediction errorξt by

At+1 = At − ǫa
∂

∂At

‖ξt‖
2. (4)

If the parametersC were also adapted in this way then sta-
ble but typically trivial behaviors would be produced unless
specific information is given to the robot.

The homeokinetic principle which we are going to use
here normally does not need any specific information in or-
der to produce a variety of elementary behaviors in a robot.
We will show that this principle for the self-organization of
behavior offers also a new perspective for learning in robots.
That is, if additional information is available then a home-
okinetically controlled robot can use this information more
efficiently. This follows from the strongly enhanced sen-
sitivity of the learning system and establishes a novel ap-
proach to learning in robots.

The homeokinetic principle suggests to use the so-called
time-loop error(TLE) which is based on the reconstructed
sensor valueŝxt. Using Eq. 1 and assuming for now thatψ
is invertible we define

x̂t = ψ−1 (ψ(xt) + ξt+1) = ψ−1 (xt+1) (5)

which are sensor values that would have made the predic-
tion perfect. Intuitivelyx̂t is obtained by going forward in
time fromxt to xt+1 and then backward in time tôxt. This
sequence is called the time loop and thus the TLE is

ETLE = ‖vt‖
2 with vt = xt − x̂t (6)

which minimizes the mismatch between true sensor values
xt and their reconstruction̂xt.

In linear approximation we obtainvt ≈ L−1
t ξt+1, where

the matrixLt =
∂ψ(xt)
∂xt

is the Jacobian ofψ at timet. Note
that vt can only be calculated afterxt+1 is available. We
account for non-invertibleL by using a regularized inverse.
The TLE

ETLE = ‖vt‖
2 ≈ ξ⊤t+1

(

LtL
⊤

t

)−1
ξt+1, (7)

minimizes the norm ofv (Eq. 6) and accounts for the error
ξ (Eq. 1) only as much as it is transformed by the inverse
dynamics of the system. This reveals another important fea-
ture of this error quantity, namely to minimize the norm of
the inverse Jacobian. This results in an increase of predom-
inantly the small eigenvalues ofL. Therefore, the controller
performs a destabilization in time. This eliminates the trivial
fixed points (in sensor space) and enables spontaneous sym-
metry breaking which shows in the robot e. g. as a transition



from rest to a directed movement. Nevertheless, the system
does not start to behave chaotically or enters uncontrollable
oscillations because the destabilization is limited by thenon-
linearity g(·) (Eq. 2). Intuitively, homeokinesis can be un-
derstood as the drive towards non-trivial behaviors that are
still predictable by the internal model. Since the internal
model is simple, smooth behaviors are preferred. Fig. 1 il-
lustrates how the homeokinetic controller is connected to a
robot.
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Figure 1: The homeokinetic controller connected to the
ARMBAND robot. The ARMBAND consists here ofm=13
flat segments that are connected by actuated joints. It re-
ceives sensory inputsxi from the joint position sensors. The
control architecture consists of the controllerK and the pre-
dictorM which are combined to formψ, see Eqs. 1 - 2. The
transparent ball indicates the center of mass of the robot. It
is used for evaluation of performance but not for control.

The TLE (Eq. 7) is minimized by gradient descent which
gives rise to a parameter dynamics that evolves simultane-
ously with the state dynamics, see e. g. (Hesse et al., 2009).

Ct+1 = Ct − ǫc
∂

∂C
ETLE

ht+1 = ht − ǫc
∂

∂h
ETLE

(8)

The learning ratesǫc ≈ ǫA for the controller and the model
are chosen such that the system adapts on the behavioral
time scale. Because of unavoidable sensory noise, the TLE
is never zero, neither does it have a vanishing gradient. The

rule (Eq. 8) produces therefore a continuously itinerant tra-
jectory in the parameter space, i. e. the robot traverses a se-
quence of behaviors that are determined by the interaction
with the environment. These behaviors are, however, wax-
ing and waning and their transitions are hard to predict.

As an example, consider a robot with two wheels that is
equipped with wheel velocity sensors. In the beginning the
robot rests, but after a short time the homeokinetic learn-
ing rule initiates autonomous forward, backward or turn-
ing movements. If a wall is encountered that causes the
wheels to stop, the robot will immediately reduce the motor
speed and change the internal parameter to regain sensitiv-
ity. Eventually it will drive in a free direction. A more com-
plex example for the self-organization ofnatural behaviors
was provided by a spherical robot (Martius and Herrmann,
2010) that is actuated by movable internal masses. After a
short time the robot starts to roll around one of its internal
axes, but switches to a different axis every so often. Fur-
thermore, high-dimensional systems such as serpentoid or
catenoid robots, quadrupeds, hexapods and wheeled robots
have been successfully controlled (see Martius et al. (2011)).

It is of particular interest that the control algorithm in-
duces a preference for movements with a high degree of
coordination among the various degrees of freedom. All
the robotic implementations demonstrate the emergence of
play-like behavior, which are characterized by coordinated
whole body movements seemingly without a specific goal.
The coordination among the various degrees of freedom
arises from their physical coupling that is extracted and
enhanced by the controller, because each motor neuron is
adapted to be sensitive to coherent changes in all degrees of
freedom due to Eq. 8.

Guided Self-Organizing Control
How can we guide the joint dynamics of state (1) and pa-
rameters (8) in order to realize a given goal by the self-
organizing process? One option is to modify the lifetime of
the transient behaviors depending on a given reward signal,
see Martius et al. (2007). A second and more stringent form
of guidance was proposed by Martius and Herrmann (2010)
and will be augmented and applied to a high-dimensional
system in the present paper. We will formulate the problem
in terms of problem-specific error functions (PSEF) that in-
dicate an external goal by minimal values. A trivial example
of such an error function is the difference between externally
defined and actually executed motor actions. This is a stan-
dard control problem which, however, becomes difficult if
the explorative dynamics is to be preserved.

GSO focuses on this interplay between the explorative
dynamics implied by homeokinetic learning and the addi-
tional drives. The challenge in the combination of a self-
organizing system with external goals becomes clear when
recalling the characteristics of a self-organizing system. One
important feature is the spontaneous breaking of symmetries



of the system. This is a prerequisite for spontaneous pat-
tern formation and is usually achieved by self-amplification,
i.e. small noisy perturbations cause the system to choose one
of several symmetric options while the intrinsic dynamics
then causes the system to settle into this asymmetric state.
A nonlinear stabilization of the self-amplification forms an-
other ingredient of self-organization. These two conditions
which we will call our working regime, are to be met for a
successful guidance of a self-organizing system. There are
several ways to guide the homeokinetic controller which we
will discuss in the following.

Guidance by Problem-Specific Teaching
First we will describe how problem-specific error functions
(PSEF) can be integrated. Recall that the adaptation of the
controller parameters is done by performing a gradient de-
scent on the time-loop error. The PSEF must depend func-
tionally on the controller parameters in order to enable the
same procedure. Unfortunately, the simple sum of both gra-
dients (of the time-loop error and of the PSEF) is likely to
steer the system out of its working regime. Furthermore,
we cannot easily identify a fixed weighting between the two
gradients that would satisfy an adequate pursuit of the goal
while maintaining explorativity. One reason is that the non-
linearity (Eq. 2) in the TLE causes the gradient to vary over
orders of magnitude. A solution to this problem can be ob-
tained by scaling the gradient of the PSEF according to the
Jacobian matrix (see 7) of the sensorimotor loop such that
both gradients become compatible. This transformation is
essentially a natural gradient with the Jacobian matrix of the
sensorimotor loop as a metrics. The update for the controller
parametersC is now given by

1

ǫC
∆Ct = −

∂ETLE
∂C

− γ
∂EG
∂C

(

LtL
⊤

t

)−1
, (9)

whereEG is the PSEF andγ ≥ 0 is the guidance factor
deciding the strength of the guidance. Forγ = 0 there is no
guidance and we re-obtain the unmodified dynamics (Eq. 8).

For clarity we will start with a very simple goal, namely
we want a robot to follow predefined motor actions called
teaching signalsin addition to the homeokinetic behavior.
We can define the PSEF as the mismatchηGt between motor
teaching cuesyGt and the actual motor values, thus

EG = ‖ηGt ‖
2 = ‖yGt − yt‖

2. (10)

Since yt is functionally dependent on the controller pa-
rameters (Eq. 2), the gradient descent can be performed,
i.e. the derivative reads∂EG

∂Cij
= −ηGi g

′

i xj , whereg′i =

tanh′
(

∑n
j=1 Cijxj + hi

)

(all quantities at timet). A sim-

ilarly motivated approach is in linear systems is homeo-
taxis (Prokopenko et al., 2008).

An evaluation of the guidance mechanism has been per-
formed using the TWOWHEELED robot, which was simu-
lated in the realistic robot simulator LPZROBOTS (Martius

et al., 2011). The motor values determine the nominal wheel
velocities and the sensor values report the actual wheel ve-
locities of both wheels. We provided to both motors the
same oscillating teaching signal. The resulting behavior is
a mixture between the taught behavior and self-organized
dynamics depending the value ofγ. Forγ = 0.01 the teach-
ing cues are followed most of the time but with occasional
exploratory interruptions, especially when the teaching cues
have a small absolute value. In this case the system is closer
to the bifurcation point where the two stable fixed points
for forward and backward motion meet. These interruptions
cause the robot, for example, to move in curved fashion in-
stead of strictly driving in a straight line as the teaching
cue suggest. The exploration around the teaching signals
might be useful in general to find modes which are better
predictable or more active.

Interestingly, we can similarly define a mechanism that
uses teaching cues in terms of sensor values (Martius and
Herrmann, 2010).

Guidance by Cross-Motor Teaching
Guidance mechanism can also use internal teaching signals.
As an illustrative example, consider the mirror-symmetry
that is preferred in many control systems. We will first fol-
low this idea and describe a simple implementation follow-
ing this example before we generalize this scheme later in
order to apply it to high-dimensional systems. In either case,
motor values of some motors will be used as teaching signals
for other motors.

Pairwise symmetries. For two motors, guidance can be
introduced by

yGt,1 = yt,2 and yGt,2 = yt,1, (11)

whereyGt is the vector of nominal motor values, see (9, 10).
For experimental evaluation we placed the TWOWHEELED

robot in an environment cluttered with obstacles and per-
formed many trials for different values of the guidance fac-
tor. The robot was rewarded for straight movement and was
therefore expected not to get stuck at obstacles or in corners
and cover substantial parts of its environment. In order to
quantify the influence of the guidance we recorded the tra-
jectory, the linear velocity, and the angular velocity of the
robot. We expect an increase in linear velocity because the
robot is to move straight instead of circling. For the same
reason the angular velocity should be lowered. In Fig. 2
the behavioral quantification and a several sample trajecto-
ries are plotted. Additionally the relative area coverage is
shown, which indicates that much more area of the environ-
ment was covered by the robot with guidance compared to
freely moving robot. As expected, the robot shows a distinct
decrease in mean turning velocity and a higher area coverage
with increasing values of the guidance factor until the guid-
ance becomes dominant and the performance drops. In the
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Figure 2: Behavior of the TWOWHEELED robot when guided to move preferably straight.(a) Mean and standard deviation
(of five runs each 20 min) of the area coverage (area), the average velocity〈|v|〉, and the average angular velocity〈|ωz|〉 for
different values of the guidance factorγ. Area coverage (box counting method with300×300 boxes) is given in percent relative
to caseγ = 0 (right axis). The robot is driving straighter and its trajectory coversmore area for largerγ. The inset shows a
screenshot of the simulation.(b) Example trajectories for different guidance factors. Notethat forγ = 0.1 still many boxes are
visited but less well spread. Parameters:ǫc = ǫa = 0.01, update rate 100 Hz.

normal regime the robot is still performing turns and drives
both backwards and forwards and that it does not get stuck
at the walls, as seen in the trajectory in Fig. 2(b), is because
the sensitivity (exploration) and predictability (exploitation)
of the controller remain. If the guidance is too strong the
favorable properties of the self-organizing behavior are lost
such that the robot stalls or performs repetitively the same
motion. Note that already very small values ofγ yield a
high effect of the guidance.

Permutation relations. In a more general cross-motor
teaching setup, each motor has one incoming and one out-
going connection, such that there is still only one teaching
signal per motor. The connections can be described by a per-
mutationπm of m motors that assigns each motor a source
of teaching input. The teaching signal is then given by

(

ySt
)

i
= (yt)πm(i) for i = 1, . . . ,m. (12)

With a cyclic schema of connections a group of motors can
be synchronized. In the following experiment we use a
rotation-symmetric motor connection setting to show that a
high-dimensional chain-like robot can quickly develop a lo-
comotion behavior.

The ARMBAND robot consists of a sequence of flat seg-
ments placed in a ring-like configuration, where subsequent
segments are connected by motor-operated hinge joints. As
a result we obtain a robot with the appearance of a bracelet
or chain, see Fig. 1. Each joint provides a sensor value of
the current position. The motor values define target joint po-
sitions, which typically cannot be reached due to substantial

physical constraints and underactuation. In this way the con-
troller obtains informative feedback from the robotic body.
Since the robot is symmetric there is by construction no pre-
ferred direction of motion, meaning that the homeokineti-
cally controller robot will move forward or backward with
equal probability. The robot cannot turn or move sideways,
but it can produce a variety of postures and locomotion pat-
terns.

With the method of cross-motor teaching we can select
different symmetries, such that the robot is more likely to
perform a directed motion. For that we define the permuta-
tion used in Eq. 12 as

πm(i) = (i+ k + ⌊m/2⌋) mod m, (13)

wherek ∈ {−1, 0, 1}. Coarsely speaking, this connects mo-
tors on the opposite side of the robot with a shift to one or
the other side in a way that depends onk. The choice of
k reflects the desired direction of motion and depends on
whether the number of jointsm is even or odd. Ifm is even
thenk = −1 andk = 1 are used for both directions (for-
ward or backward) andk = 0 represents a point symmetric
connection setup. In the latter case the robot will not pre-
fer a direction of motion and the behavior is similar to the
case without guidance. For odd values ofm, which is used
here,k = 0 andk = 1 need to be used, resp., for backward
and forward motion. In the following experiments the robot
hasm = 13 motors. The motor connections fork = 1 are
shown in Fig. 3. Each motor connection is displayed by an
arrow pointing to the receiving motor. Note that the connec-
tions are directed and a motor is not teaching the same motor
from which it is receiving teaching cues. Fork = 0 (andn



Figure 3: ARMBAND robot with cross-motor connections.
Links are connected by hinge joints that are actuated by
servo motors. The curved arrows indicate unidirectional
cross-motor connections. For these connections the robot
preferably moves leftwards. All links are identical, but four
links are drawn boldly for better visibility.

odd) all arrows are inverted, meaning that for each connec-
tion the sending and receiving motors would swap roles.

Results
To evaluate the performance we conducted for different val-
ues of the guidance factorγS five trials each 30 min long.
In a first setting the cross-motor connections were fixed
(k = 1) for the entire duration of the experiment. We ob-
served the formation of a locomotion behavior after a very
short time. Note that this behavior requires all joints of the
robot to be highly coordinated. As a quantitative measure of
the performance we calculate the horizontal velocityv us-
ing the center of mass of the robot. Thus, the velocity is a
scalar and we define forward motion ifv > 0 and backward
motion if v < 0. In this experiment we expect the robot to
move only forward, because a fixed cross-motor connection
setup was used. The average velocity of the robot increased
distinctively with raising guidance factors, see Fig. 4(a). For
excessively large values of the guidance factorγS the ve-
locity goes down again. This occurs for two reasons: First,
the cross-motor teaching has a too strong influence on the
working regime of the homeokinetic controller and second
the actual motor pattern of the locomotion behavior does not
perfectly obey the relations between the motor values, not
all motor values are exactly equal. Again, already a small
value ofγ is sufficient to achieve the goal. It appears the
self-organizing system needs only very little influence to be
guided into the desired regions of the behavior space.

Without guidance the robot moves equally to both direc-
tions but with comparably low velocity. This can be seen at
the mean of the absolute velocity in Fig. 4(a). If the value of
the guidance factor is chosen conveniently, the robot moves
in one direction with varying speed see Fig. 4(b) for 3 ve-
locity traces. The velocity traces are seen to have a peak
followed by a dip before a more steady regime is attained. It
appears that the controller learning surpasses a more optimal

configuration with respect to the velocity, but there the trade-
off between self-organizing and guidance is not met. Later
strong fluctuations may occur that reflect the explorative na-
ture of the homeokinetic part. The locomotive behavior can
also be seen in Video 1, see Ref. (Supplement, 2011), for a
low value of guidance factor (γs = 0.001) and in Video 2
for a medium value of guidance factor (γs = 0.003).

In a second setup, we changed the cross-motor connec-
tions every 5 min, i. e.k was changed from 0 to 1 and back.
A value of k = 0 should lead to a negative velocity and a
k = 1 to a positive velocity. To study the dependence on the
guidance factor and to measure the performance we use the
average absolute velocity (〈|v|〉) and the correlation of the
velocity with the configuration of the connections (ρ(v, k)),
see Fig. 5(a). Without guidance (γS = 0) there is, as ex-
pected, no correlation with the supposed direction of loco-
motion. For a range of values of the guidance factor we
find a high total locomotion speed with a strong correlation
to the supposed direction of motion. Note that the size of
the correlation depends on the length of the intervals of one
connection setting. For long intervals the correlation will ap-
proach one. In Fig. 5(b) the velocity of the robot is plotted
for different runs with the same value of the guidance fac-
tor that was used in the previous experiment (γS = 0.003).
We observe that the robot changes the direction of motion
shortly after the configuration of connections was changed,
see also Video 3 at Supplement (2011).

The locomotion of the robot is essentially influenced by
the number of cross-motor connections. For that we use
again the fixed connectivity. In a series of simulations a
number0 ≤ l ≤ m equally spaced cross-motor connec-
tions (Fig. 3) are used. With increasingl the robot start to
locomote earlier. Full performance is reached already if 8
out of the 13 connections are used, see Fig. 6(a).

In order to study the scaling properties of the learning al-
gorithm we varied the number of segmentsm of the robot
and thus the dimensionality of the control problem. The re-
sults are astonishing, see Fig. 6(b): The behavior is learned
with the same speed also for large number (40) of segments.
There is no scaling problem here for the following reason. In
the closed loop with an approximate feedback strength (self-
regulated by the homeokinetic controller) the robot needs
only very little influence to roll. The length of the robot
can even help because other behavioral modes (e. g. wob-
bling) are damped increasingly due to gravitational forces.
For the same reason, small robots are slower than medium
ones. Large robots are again slower because the available
forces at the joints become too weak. The experiment il-
lustrates that specific behaviors can be achieved in a high-
dimensional robot by using cross-motor teachings. Cross-
motor connections can break the symmetry between the two
directions of motion such that a locomotory behavior is pro-
duces quickly. When the connections are switched later dur-
ing runtime, the behavior of the robot changes reliably.
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The guidance mechanism can also be transferred to sensor
space using the direct sensor teaching, which was discussed
above and was proposed by Martius and Herrmann (2010).
One obtains a cross-sensor teaching analogously to the defi-
nitions given above. This can become useful, for example, if
a certain behavior is demonstrated by a human operator by
passively moving the robot. In the case of the ARMBAND

robot, one can easily imagine that the robot is pushed along
the ground such that a locomotion pattern is formed. Based
on the sensor readings, the correlations between the sensor
channels can be determined and serve as a basis for the con-
struction of a specific cross-sensor teaching configuration.

Discussion

We have presented here two mechanisms to guide the
homeokinetic self-organization of behavior. The first one
uses desired motor patterns that were introduced into the
learning dynamics by means of an additional error function.
The strength of guidance can be conveniently adjusted. We
have considered also cross-motor teaching as a new way of
using the directed teaching to select desired behaviors. The

approach introduced here is realized by a permutation of the
motors signal for teaching. We applied this algorithm to a
bracelet-like robot (ARMBAND) with many degrees of free-
dom and demonstrated the accelerated development of loco-
motion behavior from scratch. Even the relearning to the op-
posite direction of motion is possible very quickly. Since the
learning is very fast and the performance changes gradually
with changingγ, the guidance factor could be adapted au-
tomatically. Most striking is the scaling of the algorithm to
higher dimensions. In the present case the performance did
not decrease when the robot was enlarged to have 40 DoF.
This is a result of the exploitation of the embodiment by the
self-organization process.

The exploratory character of the controller is retained un-
der guidance and helps to find a behavioral mode even if
the specification of the motor teaching signals are partially
contradictory. For example, the TWOWHEELED robot can
choose freely between driving forward or backward, because
the behavior-space is only partially constrained. Further-
more, it is evident that the robot remains sensitive to small
perturbations and continues to explore its environment. The
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Figure 6: Scaling of learning time and performance for different robot complexity. The plots show mean and standard deviation
of the distance traveled by the robot (‘dist’ in units of 1 segment size) and of the time-to-start (‘tts’ in seconds) of 20 runs à
10 min (γ = 0.003). (a) Performance as a function of the number of cross-motor connectionsl (equally spaced around a robot
with m = 13 joints). (b) Performance for different numbers of segmentsm (DoF) with full cross-motor connectivity (l = m).

constraints are not strictly enforced by the algorithm but
the self-organization can find a mode that fits better to the
particular embodiment. The presented experiments with
the ARMBAND demonstrate this effect. The guidance sig-
nal alone would synchronize all motors to the same value
(same phase in the oscillations) which does not lead to a lo-
comotion behavior whereas the combined learning dynam-
ics leads to a smooth and adaptive locomotion, see Video 3
(Supplement, 2011).
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