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Abstract

We study an adaptive controller that adjusts its internal parameters by self-organization
of its interaction with the environment. We show that the parameter changes that occur
in this low-level learning process can themselves provide a source of information to a
higher-level context-sensitive learning mechanism. In this way the context is interpreted
in terms of the concurrent low-level learning mechanism. The dual learning architecture
is studied in realistic simulations of a foraging robot and of a humanoid hand that ma-
nipulated an object. Both systems are driven by the same low-level scheme, but use the
second-order information in different ways. While the low-level adaptation continues to
follow a set of rigid learning rules, the second-order learning modulates the elementary
behaviors and affects the distribution of the sensory inputs via the environment.

1 Introduction

Homeokinesis [11, 5, 6] is based on the dynamical systems approach to robot control cf. e.g. [18,
19, 22] that may be understood as a dynamical counterpart of the principle of homeosta-
sis [3, 1]. According to the latter, behavior is understood to result from the compensation
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of perturbations of an internal homeostatic equilibrium. Although this approach proves suc-
cessful in simple systems [12, 23], it remains elusive how it scales up to situations, where, e.g.,
internal nutrient levels in an agent are to give rise to the specific form of a resulting complex
behavior.

Homeokinesis, in contrast, provides a mechanism for the self-organization of elementary
movements that are not directly caused by a triggering stimulus, but are generated by am-
plification of intrinsic or extrinsic noise which is counterbalanced by the simultaneous maxi-
mization of the controllability of the resulting behavior. Homeokinesis provides a mechanism
to produce behaviors that are not brought about by a reward signal or a prescribed target
state, but that minimize an unspecific internal error functional [9, 7, 8, 10]. Homeostasis and
homeokinesis are complementary principles rather than alternatives. While homeokinetic
control serves to explore a behavioral manifold, homeostasis refers to the stationary state of
a highly optimized system which, however, might be reached or re-approached by a coordi-
nated exploration. It is also interesting to compare homeokinetic learning to reinforcement
learning [20, 16]. While reinforcement learning tries to maximize the expected reward for a
sequence of single actions, homeokinetics selects coherent sequences which may later be used
as building blocks in a higher-order reinforcement learning algorithm.

The present paper explores the relation between homeostasis and homeokinesis in a spe-
cific case where certain exploratory parameter changes reoccur sufficiently often such that the
result becomes predictable. In this way may the system be enabled to avoid the cause of this
parameter change in favor of a more stable internal configuration. The obvious effect that
the avoided situation deprives the system from informative signals is compensated by the
persistence of the exploratory effects that eventually cause new encounters with the critical
stimuli. We suggest an extension of the homeokinetic controller, where in addition to the
minimization of temporally local errors also predictable future learning signals are taken into
account. Predictability may be achieved by analyzing the time series of some sensory inputs
that are processed in the sensorimotor loop while other sensors or other types of sensors could
be available as context information. In addition to the low-level homeokinetic control a sec-
ond layer will be adapted for feeding such context information in a suitable way into the first
layer. We will illustrate this two-layer architecture by the example of a robot that changes
its internal parameters in order to escape from stalling in front of an obstacle based on low
level control. Subsequently it learns to avoid the collisions by advancing the wall-related
parameter changes to the time before the collision with the help of the higher control layer.

In a sense the higher-order (predictive) learning receives its learning signals from the
performance of the lower-level (homeokinetic) learning. The same effect may as well be
chosen such that noticeable parameter changes increase the probability of remaining in a
particular state as we demonstrate in a second example. Here a simulated human-like hand
is shown to produce a gripping reflex by the information that is produced by the low-level
learning.

Low-level reflexes that are produced in the current model by a homeokinetic controller
can be interpreted by high-level structures in different ways. We posit that a main goal of the
interference by the high-level control consists in the modulation of the distribution of sensory
inputs to the low-level control system. If low-level errors are interpreted as risky, the high-
level control should succeed in avoiding situations where these errors occur. In a different
set-up, errors form a challenge to the insufficient internal model of the agent that may be
adapted more effectively if the frequency of errors is increased. We will consider both schemes
in some detail while other examples are mentioned in passing. Before this, we will present a
brief summery on the principle of homeokinesis in the next section. A learning rule is derived
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from this principle in Section 3. Section 4 describes the second-order learning. Experimental
results in the learning architecture in realistic simulations are presented in Sections 5 and 6.

2 Homeokinesis

Considering an adaptive control system, we will discuss requirements for an unspecific ob-
jective function that allows a robot to acquire autonomously reproducible relations between
actions and environmental feedback.

The behavior of the robot is governed by a controller K that generates motor outputs

yt = K (xt; c) (1)

as a function of the vector of sensory inputs xt = {xt,1, . . . , xt,d}. The effect of the controller
depends on a parameter vector c = {c1, . . . , cn}. For example, the ci may represent weights
of the input channels from which K calculates a squashed sum for each output. We further
assume that the inputs are processed on a time scale that is short compared to the cycle
time. Adaptivity of the controller is achieved based on an objective function E that contains
possibly implicit information about desired behavior. In this sense it is sufficient to define
E based on the probability of survival or, as we will proceed here, by a functional that is
evaluated continuously by the robot itself.

Interaction of an agent with its environment includes sensitivity to sensory stimuli. The
actions of the robot should appear to be caused by the inputs, although the particular form
of the relation between inputs and outputs may change continuously due to the adaptation of
the internal parameters. Whether or not a reaction of a robot is due to a particular stimulus
cannot be decided by reinitialization in a similar perceptual situation if the robot is to learn
autonomously. We therefore equip the robot with an internal model M mapping the motor
command yt to the sensor values xt+1

xt+1 = M (yt; a) , (2)

based on the parameters a = {ai, . . . , an}, which may represent weights of the input channels,
from which M calculates a sum for each output. The model enables the robot to compare a
situation with a similar one that was encountered earlier. If the robot’s objective was solely
the reproducibility of a reaction then the robot would tend to run into trivial behaviors. This
could mean e.g. that the robot behaves such that the inputs remain as constant as possible,
suppressing thus sensitive reactions. We focus therefore on the unavoidable differences be-
tween inputs and the corresponding predictions by the internal model. If these differences are
small then the robot is obviously able to predict the consequences of its actions. If, in addi-
tion, the differences tend to increase due to new stimuli then the robot is also sensitive. Note
that the differences can be decreased also by improving the internal model which induces
in the robot a tendency to increase exploration beyond the growing region of predictable
behavior.

The main idea of the approach derives from the fact that a destabilization in time is
dynamically identical to a stabilization backward in time. Because predictability in a closed
loop enforces stability, a virtual inversion of time is the road to a destabilization without the
loss of predictability. This idea will become more clear in the following formal description.
as a first step we introduce a virtual sensor value x̂ by

x̂t = arg min
x
‖xt+1 − ψ (x)‖ , (3)
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which is optimal with respect to the prediction of the following input xt+1, although generally
different from the real input xt. The predictor

ψ = M(K(x); a), (4)

cf. Eq. 2 is realized by a parametric function, e.g. an artificial neural network that receives
the sensor vector xt as an input and generates an estimate of the subsequent input xt+1. In
principle, the representation (4) of ψ comprises both the controller K and the internal model
M , because the prediction of the future output necessarily depends on the current action. In
this sense the function ψ depends on both parameter vectors c and a (1, 2), but assuming
(cf. below) that the adaptation of a occurs on a slower time scale than that of c, we may drop
the argument a in most cases. When we want to emphasize the dynamical systems aspect
rather than the learning dynamics, we shall focus on the dynamical variables and omit both
arguments c and a.

We can interpret the calculation of x̂t as a mechanism for editing an earlier input which
is invoked once xt+1 is available. In order to minimize the effect of the editing, one should
require that

‖xt − x̂t‖ → min, (5)

which actually turns out to be the central criterion of the approach. Eq. 3 is nothing but a
regularized solution of the possibly ill-posed equation

x̂t = ψ−1 (xt+1) , (6)

which reveals that essentially the inverse of the predictor ψ (4) is used in order to produce
x̂t, see also Fig. 1. In this sense we consider the sensory dynamics in inverted time while
avoiding a conflict with causality.

Figure 1: Scheme of the homeokinetic control scheme based on a sensorimotor loop. Sensor
values x(t) are used by the controller to generate motor commands y(t) which are executed
in the environment (W). Subsequently, new sensor values x(t+ 1) become available. A world
model (denoted by M) that realizes a function ψ(x(t)) ≈ x(t+1) (4) is simultaneously adapted.
The goal of the parameter adaptation is to minimize the difference between the virtual and
the true sensor value x(t).

4



Electronic version of an article published as Advances in Complex Systems,
Vol. 12, No. 3 (2009) 273-291, DOI: 10.1142/S0219525909002258

c©World Scientific Publishing Company http://www.worldscinet.com/acs/

Often instead of (5) the problem

‖xt+1 − ψ (xt)‖ → min (7)

is considered which measures the forward prediction error ‖ξ‖, where ξ = xt+1 − ψ(xt).
Eqs. 5 and 7 have in common that they optimize the predictability of sensory inputs

by the predictor ψ (4). The dynamical effects are, however, quite different. (7) causes the
controller to decrease the distance of any noisy trajectory from the predicted value. This
leads generically to a convergence of nearby trajectories, i.e. tends to stabilize the current
behavior. Condition (5), in contrast, causes nearby trajectories to diverge, which is, however,
counterbalanced by the simultaneous optimization of predictability. In (5) we shall use the
abbreviation vt = xt − x̂t in order to denote the predictor-based sensory shift. It is used in
the definition of an energy function

E = ‖v‖2 . (8)

Because minimizing E minimizes the sensitivity of ψ−1, cf. Eq. 6, the sensitivity of the
function ψ with respect to variations of its arguments is maximized. The shift v is small
if both ξ = xt+1 − ψ(xt) is small and the derivative of ψ is large. Hence, the two goals of
sensitivity and predictability are implicit in (8). This becomes more obvious when studying
the parameter dynamics in the approximation of small v. The sensor value xt+1 can be
expressed in either way

ψ(xt) + ξ = xt+1 = ψ(xt + v). (9)

The shift v can be used to generate a Taylor expansion of the environmental effects implicit
in ψ

ψ(xt + v) = ψ(xt) + Lv, (10)

where L is the Jacobian matrix of the system defined as Lij = ∂
∂xj

ψi (x). Using Eq. 10 in (9)
we find v = L−1ξ. The energy function is then

E =
(
L−1ξ

)T (
L−1ξ

)
. (11)

For this formulation of E is is immediately clear that that by gradient descent on E the
modeling error ξ is decreased whereas the sensitivity of the system is increased by increasing
the Jacobian L. However, an increase in sensitivity will tend to lower predictability and
vice versa, such that the actual behavior can be expected to oscillate between periods of
exploration and stabilization in a way which reflects the quality of the predictor and the
complexity of the environment.

3 Learning rules for control

Because the cost function (11) depends via the behavior of the robot also on the controller
parameters (1), adaptive parameter changes can be achieved by a gradient flow on E (xt, ct),
where xt denotes the trajectory of the robot in the sensory state space and ct the current
values of the controller parameters. The combined dynamics

xt+1 = ψ (xt; ct) + ξt (12)

ct+1 = ct − εc
∂

∂c
E (xt, ct) (13)
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describes both the effects of the environment and the controller on the sensory state of the
agent as well as the adaptation of the controller parameters. The resulting state (12) and
parameter dynamics (13) run concomitantly and form a dynamical system in the product
space formed by x and c. Learning, in this sense, means to identify both a set of parameters
as well as a region in x-space which are optimal with respect to E. It is possible that the
learning process results in a limit cycle involving both parameters and states, or it may be
even open-ended by allowing a robot to gradually explore a virtually unbounded environment.

The parameters a of the internal model M (2) predicting how sensor values x are in-
fluenced by controller outputs y and the environment, are adapted by supervised learning.
Since training data are given by the pairs (yt, xt+1) the prediction error ‖xt+1 − ψ (xt) ‖ is
suitable to improve the model with learning rate εa. Note that the model adaptation has in
principle an effect on the loop function ψ (4), but we should consider how the time scales of
the adaptation processes are related. The ratio of εc in (13) and εa is crucial for the learning
process. If εa ≈ εc the model is in principle able to track the changes in the behavior of
the agent, while for εa � εc the model is rather accumulating information about the envi-
ronment. Note that εc must correspond to a time scale comparable to the maximal rate of
change of the sensory inputs in order to allow for an immediate reaction.

Ignoring the effects of the nonlinearity in Eqs. 12 and 13 we find that the state in (12) is
dominated by the eigenvector of L with largest eigenvalue. Therefore, a learning rule based
on Eq. 7 reduces the maximal eigenvalue of L. A learning rule based on (8), (11) will instead
tend to increase the minimal eigenvalue of L by minimizing the maximal eigenvalue of L−1.
In this way more and more modes become activated and, if the forward prediction error ξ
does not increase, the behavior becomes sensitive with respect to many different stimuli.

In the following we will use a pseudo-linear controller K with y = tanh(z), where z =
cx+ h and the loop function is ψ(xt) = a tanh(cxt + h). For this controller Eq. 13 becomes

∆c = µa− 2µx (z − h) (14)
∆h = −2µ (z − h) (15)

where a is the linear response of the environment to the action y obtained by the internal
model M(yt) = a(yt) and µ > 0 is a modified learning rate including the energy function E
(11). The update of the bias h has the opposite sign of z and hence of the motor command y.
This leads to a hysteresis effect where the sign of ∆h changes as soon as the motor command
changes sign. The interesting point is once |h| > |cx| (and h y < 0, that is h and y have
opposite sign) the bias will initiate a change of the motor command. Since the learning rate
µ of the bias is modulated by the energy function E, with varying E a robot will execute an
irregular searching behavior.

4 Hebbian second-order learning

The homeokinetic controller (1, 14-15) generates simple reactive behaviors that are inter-
esting because of their flexibility. We are now going to modify the controller such that in
addition prospective information can be exploited in order to generate preventive action,
thereby relying on other information which may be available from more complex sensors and
predictors. We propose to interpret such information in terms of the low-level control which
may be advantageous if no background information can be referred to for the interpretation
of the high-level information.

We extend the homeokinetic controller by an additional learning mechanism in order to
avoid situations that cause low-level errors. The homeokinetic controller will eventually lead
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the agent out of these situations but only by accumulating the error-related cost during the
time the error is above the baseline. In reoccurring situations the error is certainly predictable,
which suggests to add a predictive component to the homeokinetic controller. Rather than
replacing the controller by an eventually fixed forward system we aim at retaining flexibility
and merely advance the low-level error by estimating the future error of the low-level predictor
ψ in a higher control layer.

The error function (11) that is minimized by the homeokinetic control layer is thus ex-
tended by an additive contribution from context sensors which can be represented by

E =
(
L−1(ξ + ζ)

)T (
L−1(ξ + ζ)

)
. (16)

Here we introduced the prediction ζ of the error ξ = xt+1 − ψ(xt) which is calculated based
on the context input. In place of the pseudo-linear regression that will be used here for
simplicity, more complex predictors are certainly possible, but the more interesting option
is to substitute ζ by an arbitrary reward signal that then would become effective in shaping
the behavior. In order to interpret such a reward signal only its order of magnitude has to
be known in advance while its size relative to previous time steps or relative to the level of ξ
can be evaluated by the algorithm.

In just the same way does the sign of ζ affect the learning of the prediction of the forward
error ξ. The ambivalence of the error suggests different choices of the way the predicted error
enters the behavioral learning. A natural way is to use the additional sensory information
once it is available in order to avoid regions which tend to generate large errors. If, to the
contrary, the large errors indicate a learning task than the prediction of these errors can
be used for guidance towards challenging regions in the environment. The idea to use the
predicted decrease in the forward error, i.e. expected success of learning, has been put forward
in Ref. [13].

The channel by which the context information arrives will be denoted by xH , where
the index already points to the present Hebbian formulation [14, 4] of the functional of the
the influence of the context information on the low-level learning rule (16). The additional
contribution to the cost function (16) will be provided by a supervening adaptable layer that
naturally uses the Hebbian rule, cf. Eq. 18 and is trained on-line to predict ζ, cf. Fig. 2.
The robot is now controlled such that in addition to the state estimation error ξ also the

Figure 2: Scheme of the extended control structure. A Hebbian layer affects the homeokinetic
controller by the predicted modeling error ζ which complements the low-level time-loop error.
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prediction ζ of the state estimation error is minimized.
Although ζ may be derived from any feature of the learning process such as learning

progress or predictability of the sensory trajectory we found it interesting to consider the
integration of additional signals xH that are available to the agent via other sensory modali-
ties. In this way, self-organizing control can be extended to applications in sensor fusion. The
additional signals can be considered as a context with respect to the basic learning goal of the
homeokinetic controller. For example, when the homeokinetic controller is driven by errors
from proprioceptive sensors then the Hebbian layer may refer to external sensors. Another
option would be to associate distance information with possibly complex visual input.

If the additional input xH to the higher layer is unavailable ζ is defined to be zero.
Similarly, if xH and the low-level error ξ are not correlated then their effect on the weights
(18) will essentially average out. In this way such situations will not be recognized by the
Hebbian layer and the effect of ζ onto c will also remain unsystematic. In these cases the
actual behavior is produced solely by the homeokinetic controller. Otherwise the controller
will adapt such that both ξ and ζ are reduced. In order to retain the full flexibility of
the low-level controller we do not allow the context parameter to interfere with the activity
parameter c that induces an exploratory behavior if sufficiently large. If c were modifiable by
the context then the robot might stop to forage and become ‘stunned’, which did not seem to
be desirable for a robot although it is known from behavioral studies in a number of animals
[24, 25, 26]. Instead the context-dependent energy function (16) applies only in the update
rule of the threshold h (15), influencing the bias of the controller rather then leaving the
high-gain regime. This is also compatible with earlier studies [6, 15] that have shown that
the exploratory mode is characterized by a stationary non-zero c value while the threshold h
continues to fluctuate.

The Hebbian layer is realized by a leaky integrator neuron with a linear output function
for each of the sensors x of the homeokinetic layer. All additional sensory information xH

available to the higher layer is used as input to each neuron and weighted by the synaptic
strength wij according to

ζi =
m∑

j=1

wijx
H
j , i = 1..n, (17)

with m being the number of context sensors and n the number of sensors available to the
homeokinetic layer. The update rule for the weights is

∆wij = εξix
H
j (1− w2

ij), (18)

where ε is a learning rate and ξix
H
j realizes Hebbian learning between the low-level error ξi

of the homeokinetic layer and the input xH
j of the Hebbian layer. A decay term (1− w2

ij) is
added which restrains the weights from unlimited increase. For this weight normalization to
be effective we must assure that the initial values obey ‖wij‖ < 1 and that this property is
not destroyed by the time discretization. We found still an advantage of the soft threshold
in Eq. 18 as compared to a hard limit. Nevertheless, a sensory input of 1 weighted with a
synaptic strength of nearly 1 would result in a predicted state estimation error ζ of about
1, which can realize an immediate change of the actual behavior as intended. By using the
context-dependent energy function (16) the homeokinetic controller can thus avoid situations
which lack low-level predictability.
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5 Foraging in a wheeled robot

In the general case we have a vector of sensor values xt ∈ Rd at the discrete instants of time
t = 0, 1, 2, . . . . By way of example we may consider a two-wheeled robot, cf. Fig. 3, where
the low-level controller receives the measured wheel velocities as input. In addition infrared
sensors are available as context sensors.

Figure 3: Experiments are performed with a two-wheeled robot in a circular arena. The
robot is equipped with wheel counters and eight infrared sensors. The black lines indicate the
infrared sensor orientation and range. The sensor range is three length units and the diameter
of the arena is 14 length units.

The state estimation (or modeling) error ξ describes differences between predicted and
measured wheel velocities. The predicted modeling error ζ is used to modulate the home-
okinetic layer in order to change the actual behavior before arriving at situations with a
large state estimation error, which refers to collision situations in the example. The setup of
the experiments consists of a simulated two-wheeled robot with infrared sensors, placed in a
circular arena, for details see Fig. 3.

In the experiments we will show that obstacle avoidance behavior of a two-wheeled robot
equipped with infrared sensors can be obtained based solely on the intrinsic properties of
the system. The effectiveness of the obstacle avoidance is not perfect since the system tries
occasionally to explore also the regions near the boundaries. Nevertheless the time the robot
spends near obstacles is strongly reduced, cf. Fig. 5. The Hebbian layer is provided with
proximity information from eight infrared sensors with a sensor range of three length units.
In order to suppress small noisy activity in the infrared sensors, only sensor values larger
than 0.15 are considered. The synaptic strength wij of the Hebbian layer are initialized with
zeros. The parameters of the homeokinetic layer are initialized with small random values.

In a first experiment only the homeokinetic layer was used while the second experiment
was featuring the extended controller including the higher control layer. Each experiment
runs for one hour of simulated real time in a simulation environment that is designed to
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Figure 4: Trajectory of the robot using pure homeokinetic control (left) and the extended
controller (right). An increasing concentration of the robots positions in the inner obstacle
free part of the circular arena can be identified when using the Hebbian control layer, as
compared to pure homeokinetic control.

realistically reproduce the physical interactions of the robot with the external world. In
order to obtain information about long-term stability a third experiment was conducted that
lasted 24 hours.

The trajectory of the robot in the two experiments is plotted in Fig. 4. The positions of
the robot concentrate increasingly to the inner obstacle-free region when using the Hebbian
control layer as compared to pure homeokinetic control. The histogram of the robots distance
from the center of the arena illustrates the effect of the learning scheme, see Fig. 5. During
the first part of the experiment (top row) the Hebbian layer started to adapt but shows hardly
any effect on the robots behavior yet. Hence the histograms show similar distributions.

The bottom row of Fig. 5 shows histograms of the robots position during a later part of
the experiment where the influence of the Hebbian control layer is dominant. Without access
to the Hebbian layer the probability of the robot to stay near the wall is approximately
three times higher than being at any other distance from the center, cf. Fig. 5 (bottom left).
This is caused by the fact that in the central obstacle free region of the arena behaviors are
more stable due to the small state estimation error and hence larger distances are covered
by the robot. Whereas in the region near the wall behaviors change more often due to a
larger modeling error and the robot is not able to cover large distances. Therefore the robots
probability to stay near the wall is higher. When enabling the Hebbian layer the robots
probability of being near the wall is drastically reduced and the highest probability is now
shifted towards the center of the arena, see Fig. 5 (bottom right).

The predicted modeling error ζ of the Hebbian layer leads to a change of the actual robot
behavior before the collision region is reached. Since the selection of the following behavior
is not constrained the robot can still reach the collision area, but with much less probability.
This can be interpreted as a flexibility of the system which continues to explore the collision
area.

The usage of the predicted modeling error in the homeokinetic layer leads to pre-collision
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Figure 5: Histogram of the robots distance from center normalized by the respective areas.
The left column presents the results for pure homeokinetic control and the right column those
of the extended controller, in both columns for the first 15 minutes (top row) and the last
15 minutes (bottom row) of the experiments with a total time of 1 hour. In the initial phase
the Hebbian layer is not yet functional and both controller show comparable results. In the
later part of the experiment (bottom row) the mean occupancy has shifted away from the wall
towards the center of the arena in the case of the extended controller.

changes of the robots behavior rather than to the trivial solution where the robot stops
somewhere in the central region of the arena. In Fig. 6 the traveled distance of the robot
with and without usage of the Hebbian layer is shown. Regions of inactivity are essentially
absent. Also the total traveled distance is not reduced by incorporating the Hebbian layer.
In the 24-hour experiments no stability problems of the system were observed, as indicated
by the mean and standard deviation of the controller and internal model parameters of the
homeokinetic layer in Table 1.

The weights of the Hebbian layer during the 24-h experiments show that the physical
properties of the robot are reflected in the learned correlations, cf. Figs. 7. The two front
infrared sensors happen to become included with a negative sign. This can be expected when
considering the case of a frontal collision: The wheel counters indicate forward motion by
xt > 0. Then the velocity predicted by the state estimator model for the next time step
will typically also be positive ψ(xt) > 0. After the collision, when the front infrared sensors
are still active with xH > 0, the velocity sensor will yield xt+1 = 0, while the prediction is
still ψ(xt) > 0. Hence, the prediction error ξ = xt+1 − ψ(xt) will be negative. The Hebbian
layer extracts this correlation between infrared sensor and modeling error by converging to
negative weights for the front infrared sensors according to (18). This way the predicted
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Figure 6: Cumulative distance traveled by the robot over time using pure homeokinetic control
and the extended controller. The traveled distances in the two experiments are comparable,
indicating that the Hebbian layer did not reduce the activity of the robot.

future modeling error ζ will be negative. The same holds true for the rear infrared sensors
with inverted sign for the velocity, Hebbian weights and (predicted) modeling error. Hence, by
reflecting the physical properties of the robot, the Hebbian layer provides distinct information
how to react in collision situations, e.g. drive forward/backward depending on the sign of ζ.
For the sidewards sensors the correlations turned out not to be significant, since they were
activated during frontal as well as rear collisions. In the presented principle the directional
information of the Hebbian layer is not exploited. In the context-dependent energy function
E (16), which is part of the modified learning rate µ in the update rule of the bias (15), only
the absolute value of the predicted modeling error ζ is relevant if ξ is assumed to be small
in pre-collision situations. To be able to exploit the directional information of the Hebbian
Layer we will propose a modified principle studied in a more complex hardware set-up in the
following section.

We might have as well used inverted infrared sensors (xH ≈ 0 near the wall, xH ≈ 1 in
free space) as context sensors. In this case the robot would rather show a tendency to stay
within the vicinity of the wall. This behavior could be also interesting because the robot still
retains the flexibility to adjust its internal parameters such that it is able to move freely while
staying near walls. The robot’s preference for wall in this modified scheme is reminiscent to
a foraging rat, cf. e.g. [21].
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(a)

parameter mean std. deviation
c0,0 1.2130 0.0921
c0,1 0.0132 0.1478
c1,0 0.0024 0.1615
c1,1 1.2301 0.1097
h0 -0.0090 0.2073
h1 0.0027 0.2247

(b)

parameter mean std. deviation
a0,0 0.9728 0.0311
a0,1 -0.0044 0.0191
a1,0 -0.0040 0.0216
a1,1 0.9636 0.0377

Table 1: Mean value and standard deviation of (a) the controller and (b) the model parameters
of a 24-hour experiment. The model parameters a converge to a unit matrix that reflects the
physical properties of the robot, where each wheel is controlled by one of the motor commands.
The controller parameters c reflect this structure. The bias terms h driven by the context-
dependent energy function continue to oscillate about zero as indicated by the large variances.

Figure 7: Histogram of the weights of the Hebbian layer contributing to ζ1 for a long-term
experiment (24 h real time) of the simulated two-wheeled robot with extended controller. The
labels at the y-axis correspond to the eight infrared sensors. Front and rear sensor weights
have negative and positive sign, resp., indicating the ability of the Hebbian layer to correctly
extract the correlations between modeling error ξ and the activity of the proximity sensors.
For details see text.

6 Gripping in a human-hand model

For the further evaluation of the context-based exploration we programmed a model of a
human hand with five degrees of freedom, see Fig. 9. All joints are controlled by bidirectional
motors that mimic the interplay between flexor and extensor muscles. The effect of a motor
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action is measured by motion sensors, which serve as input to the low-level homeokinetic
controller. Each finger is controlled by an individual controller such that interactions between
the fingers are possible only via the environment. If no object is present for manipulation the
fingers become quickly engaged in vivid movements which can be interpreted as an exploration
of the dynamical range. In the presence of an object the state estimation errors increase
considerable when the fingers touch the object, because the information about the object
is not available to the model of the dynamics of the proprioceptive sensors. It is, however,
available to the Hebbian layer as context information xH via touch sensors (realized here as
infrared sensors). The Hebbian layer is implemented using (17, 18).

In this experiment we exploit the directional information of the Hebbian weights, as found
and discussed in the previous section (see also Fig. 7), by directly adding the output ξ of the
higher layer to the update of the threshold h so that (15) changes to

∆h = −2µ (z − h) + ζ. (19)

This way the Hebbian layer is enabled to directly determine the direction of the actuators.
The energy function is used without the context-dependent term, as given in (11). This will
give the same result as applying the scheme of the previous section. The fingers will flinch
when arriving close to the surface of the object but remain active otherwise like in the free
case. By changing the sign of the contribution of the higher layer to the bias update in (19)
we get

∆h = −2µ (z − h)− ζ.

Thus, the system will show the opposite reaction to the predicted modeling error ζ. This way
we can shape the behavior of the system in order to show a gripping reflex. The adaptation
of a Hebbian weight in dependence of the corresponding infrared sensor and state estimation
error is shown in Fig. 8. Results presented in Figs. 9 and 10 show that soon, after an object

Figure 8: Adaptation of a synaptic strength of the Hebbian layer during the experiment.
According to Eq. 18 the change of a weight is defined by the corresponding state estimation
error ξi and context sensor xH

j (here the infrared sensor). If both values are large then a
change of the weight is triggered.
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is presented, a grip at the object is realized due to the domination of the Hebbian layer. If
the object is removed and presented again the hand closes and the fingers grab the object.

Figure 9: Simulation of a human hand with multiple degrees of freedom. The hand is equipped
with motion sensors at all joins and infrared sensors at the finger tips. It is operated in a fully
exploratory mode with or without a manipulated object.

7 Conclusion

In the experiments realistically simulated robots were shown to acquire low-level behaviors
which are characterized by simultaneous sensitivity and controllability. The basic behaviors
are obtained from an interplay of a mildly destabilizing controller with the environment
which is constrained by the prediction quality achieved by an internal model. In unforeseen
situations, i.e. near ‘obstacles’, parameter changes are triggered which are time-consuming
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Figure 10: The finger movements that are initiated by the self-organizing controller soon
converge to a grip at the object (high infrared sensor activity) with only small deviation
of single fingers from the surface. When the object is removed the exploratory movements
restart. If the object is present the fingers will grip it again since the Hebbian layer already
learned this reflex.

and may even cause unlearning of previously acquired behaviors. The proposed second-order
learning schemes are coping with such a situation in different ways [2]: Either the robot is
controlled such as to avoid these situation which generates an interpretation of additional
sensory inputs in terms of the low-level affordances, or it is guided towards these situations
in order to further improve its prediction quality. The decision which mode of operation of
the second-order learning is to be activated is to be taken in dependence of the quality of
the internal model such that increasing prediction quality should favor the exploratory mode
while insurmountable errors should lead to a preference of the avoidance behavior. The
exploratory character of the low-level self-organizing controller is retained in both cases and
the robot still explores occasionally risky regions and is hence able to adapt to slow changes
in the environment. The work shows also parallels to the early motor development in biology,
cf. e.g. [17], and provides a scheme for the formation of reflexes based on an approach to the
self-organization of autonomous behavior.
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