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CHAPTER 1

Introduction

Recent years have witnessed a tremendous increase in the computational
power, the sensory and motoric equipment and materials for the construction
of autonomous robots. Nevertheless, the behavioral competencies of current
robots is lagging far behind that of humans or even animals. In fact, any ant
is much better in surviving in a natural environment than the most advanced
robot. This concerns questions of robustness, fault tolerance, flexibility,
and autonomy in general. This has triggered a series of new developments
trying to develop robots which are closer to living beings. In particular one
has to reject at least partially the strong computer metaphor of artificial
intelligence but instead look for other realizations of the behavior control.
These new developments not only will give the possibility to draw from the
wisdom of nature in the sense of finding new control paradigms but also will
have an impact on the computational theory of cognitive processes in living
beings. Moreover, as has been stressed in the context of embodiment, these
approaches also give rise to a new approach to artificial intelligence and thus
are an important contribution to the development of computer science, see
[48].

Of the many approaches we will in the following mention the use of
dynamical systems, the developmental and epigenetic robotics, the paradigm
of embodiment and the theory of self-organization.

1. The dynamical systems approach

Dynamical systems are an important field of research in both mathemat-
ics, physics and also in the life sciences. Their importance for the robotics
was noted first by the seminal paper of Randall Beer [2] where he described
the robot in its environment as a dynamical system. This idea was developed
further in later papers, see for instance the paper on dynamical approaches
to cognitive science [3] and the related work in cognitive science based on the
book by Port, van Gelder et al. [49]. A systematic study of the approach
is given in [44]. Following these ideas, dynamical system terminology is
applied in two ways, metaphorical and formal. In its metaphorical use, one
essentially applies the dynamical systems vocabulary to describe what a ro-
bot is doing. For example, if an agent’s behavior stabilizes in a particular
environment and the agent starts going in circles or oscillates to the left
and to the right in a corner, this is said to constitute a limit cycle. When
using dynamical systems formally, we need to specify what the system we
intend to model and then we have to establish the differential (or difference)
equations. One approach would be to model the agent and the environment

6



2. DEVELOPMENTAL ROBOTICS 7

separately and then to model the agent-environment interaction by making
their state variables mutually dependent.

In a more practical perspective dynamical systems are used as generator
of behaviors based on the fact that a dynamical system of a certain complex-
ity offers a wide range of behaviors ranging from fixed point over limit cycle
to chaotic behavior. Most importantly these behaviors can be modified by
changing the parameters of the system. Many researchers therefore follow
the idea to use a dynamical system as the ”substrate” for the controller of
the robot, see for instance [15], [54], [60], [21], and [4]. In particular many
researchers use the dynamical systems with limit cycles since the latter can
be used for the control of rhythmic movements like walking, see [25], [45],
or drumming [30] to name only a few. Another approach is followed in [28]
where a nonlinear 2 − d system is used for the navigation in a dynamical
environment.

These approaches are very interesting, they require however that the
parameters are tuned by hand which is a rather complex procedure. Ar-
tificial evolution is one way of solving this problem [20]. Further progress
is achieved by using adaptive oscillator systems, for instance [39], [51], [5],
[50], which are self learning in some sense so that they tune their parameters
so that the correct frequencies emerge.

The dynamical systems to be analyzed in the present paper have some
similarities with the latter approach. The main difference is in the fact
that they are self-referential in the sense that there is no prespecified goal
for the adaptation. Nevertheless these systems develop behaviors which are
closely related to the special environmental conditions. As compared to the
adaptive oscillator systems the difference is that our systems develop under
certain conditions a self-induced sweep through the frequency space with
a frequency locking if there is some resonance with the environment. This
effect has been described for the first time in the present thesis, see Chapter
5.

More on the biological side, several authors have followed the idea of
using the language of dynamical systems for the identification of behavior
primitives in real biological systems, see [6] and [14] for some early papers.
Subsequently the synthesis of behavioral primitives as a self-organization
process utilizing a distributed representation scheme has been considered in
[57] based on [56]. Using imitation learning of a four degree robot arm as
an example the authors seek to integrate both fixed point and limit cycle
attractors in the neural network through supervised learning of end-point
and oscillatory behavior.

2. Developmental robotics

The problems with programming robots on a rule based paradigm has
evoked the desire to have a true individual development of a robot. In
2001 several of the protagonists of this paradigm have presented in a pa-
per in Science these ideas to a broader public[59]. A more recent review
of the achievements in this field is given by the paper [36]. The aim of
this approach is the robot which is ”born” without (advanced) knowledge
and behavioral competencies but acquires the latter by self-exploration and



8 1. INTRODUCTION

interactions with the environment, and in a later phase also with a human
trainer in a process of life-long learning in an on-line (and one-shot) sce-
nario. A prominent example is the playground experiment, see [43], [41],
and the book [42]. The embodiment plays a central role in these approaches,
see [31] and the papers cited in [36].

A systematic approach is provided by the concept of an inner motivation,
so that the agent is driven to actions with the aim of knowledge acquisition,
see [52], [53]. Alternative approaches are based on information theoretical
paradigms like the information self-structuring [37], the maximizations the
information transfer in the sensorimotor loop [29]. These measures are used
then in the artificial evolution, see for instance [40], in order to generate
a selection pressure endowing the individuals with an artificial curiosity.
Prominent examples of this approach are the emergence of a visuomotor
coordination [37]. In a similar sense, the learning progress has been used as
an internal motivation see [26] for details.

The approaches so far suffer from the disadvantage that they work in
rather structured environments with few degrees of freedom. By way of
example, in the playground experiment the state action space is restricted
to only three bits of sensory information and a few behavioral primitives,
see [43]. This also means that the embodiment plays only a minor role. The
approach of R. Der et al. which forms the basis of the present thesis has
been demonstrated to work with embodied agents with many independent
degrees of freedom in unstructured, dynamic environments. In particular, it
equips the agents with a playful explorative behavior which is vital for the
developing robot in its early sensorimotor stage. The results of the present
thesis can be understood as a theoretical basis for the developmental robotics
in this early phase of development.

3. Embodiment

In recent years, both in robotics and in cognitive science, there has been
an increasing awareness that the computer metaphor of artificial intelligence
is not any longer applicable in the strong sense. The latter sees intelligence
as an algorithm, the body simply as the device which executes the control
actions prescribed by the algorithm (the brain). Instead the new approach
takes full account of the embodiment of the agent. One of the shared ideas
of this work is that a significant fraction of the behavior must be seen as
emerging from the ongoing interaction between an agent and its environ-
ment, see [48], [47], [46] for an introduction into these ideas. In robotics
one tries above all to reduce the control effort by exploiting the physical
properties of the robot, a prominent example being the passive walker as
introduced by McGeer [38], others are [22], [23] , and many applications
may be found in [24].

The approach considered in the present thesis is much involved with the
phenomenon of embodiment since the self-referential dynamics manages to
feel the physics of the body and in this way makes also use of the physic of
the robot, see [9] for details. Therefore the present thesis may also be con-
sidered as a contribution to the systematic approach to embodied Artificial
Intelligence.
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4. Self-organisation

Self-organization in the sense used in physics means the spontaneous
creation of patterns in space and/or time in dissipative systems consisting
of many components (particles), see [13]. A systematic approach to the
phenomenon of self-organization has been given by Hermann Haken by the
paradigm of synergetics [16] which has also a standing in cognitive science,
see [17], [58] for details. Central in this context is the notion of emergence
meaning the spontaneous creation of structures or functions which are not
directly explainable from the interactions between the constituents of the
system. Typical examples are given by reaction diffusion systems where the
diffusion is driving the system towards complete homogeneity whereas there
is an autocatalytic chemical reaction providing a self-amplification process.
Thus, small local fluctuations can be amplified and form the origins of the
emerging structure.

These effects known from physics and synergetics find a direct applica-
tion in swarm robotics because of the similarity with a system of many con-
stituents in physics (reaction diffusion systems) or biology (insect colonies),
examples may be found in [27], [35],[34], and [33]. The aim of the present
thesis is a contribution to a general approach to the self-organization of be-
havior of a single robot. We understand by a general approach that there
is a completely domain invariant objective function for the adaptation of
the robot which produces seemingly domain related behaviors. There are
only few approaches known from literature in the present sense, an example
being the work by Kuniyoshi. [31].

The present thesis is based on such a paradigm as developed and tested
in various examples in recent years, see Chapter 4 and 3, the publica-
tions [8], [12], [10], [11] and the video page http://robot.informatik.uni-
leipzig.de/research/videos for details. The objective function is derived from
the following principle. We consider robots controlled by a neural network
with fast synaptic plasticity. The ideal behavior of the robot is qualified
by (i) a maximum sensitivity to current sensor values. This induces a self-
amplification of changes in the sensor values and thus is the source of ac-
tivity; and by (ii) a maximum predictability of future sensor values. This
keeps the behavior in “harmony” with the physics of the body and the en-
vironment. Formally this leads to a dynamical system approach based on a
self-referentiality paradigm.

5. Motivation and aims of the thesis

Based on the aforementioned paradigm, in recent years a great number
of different robots have been shown to develop modes of behavior of its
own without a specific goal prescribed. The computer simulations and also
the experiments with real robots (like Khepera and pioneer robots) have
produced often very unexpected results like the jumping of a snake out
of a narrow pit, the emergence of a rotational mode in an underactuated
snake artefact, stable rolling modes in spherical robots and quite generally
a more or less playful exploration behavior, see http://robot.informatik.uni-
leipzig.de/research/videos . These behaviors are observed at the phenomena
level so that they require a deeper understanding in order to further develop
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the approach. This is one of the aims of the present paper. Moreover, at the
formal level the approach is based on a self-referential dynamical system.
This is a kind of dynamical systems which has a theoretical interest in itself
since it produces a number of interesting phenomena which may be useful
in the further development of the dynamical system approach to robotics,
cognitive science, and artificial intelligence.

The thesis is organized as follows. In Chap. 2 we exemplify the dy-
namical system formulation of the robot in its environment by an elemen-
tary example which however already contains much of the peculiarities of
the present approach. Then, in Chapters 4 and 3 we introduce the self-
referential dynamical systems in both the simple toy system and in a more
general context. The Chapters 5 and 6 contain the investigations of systems
in two and three dimensions where the self-referential dynamics is already
quite complex but still more or less understandable in theoretical terms. In
Sec. 6 an application to an embodied agent is reported. In 7 we discuss
the application of the method of natural gradient in order to get the robot
more concentrated on the relevant sensor information and finally in Chap.
8 some final considerations and remarks on future work are found.



CHAPTER 2

An elementary sensorimotor loop

The aim of the present chapter is to introduce a very simple example
of an elementary sensorimotor (SM) loop by which we can demonstrate
large parts of our paradigm of formulating the robot in the environment
as dynamical system. In particular we want to demonstrate the benefits of
closed loop control in the form we use it in the present work.

1. Dynamics of the SM loop

We consider a robot moving with velocity along the x-axis of our coor-
dinate system with true velocity qt. The velocity is read by a wheel counter
which outputs a measured velocity xt so that

xt = αqt + kt

where kt is the measurement (sensor) noise and α is a hardware constant.
The controller of the robot outputs the target velocity yt for the current
time step which is given in terms of the sensor value xt as

yt = K(xt) (1.1)

In the most simple case we use

K(x) = g(cx) (1.2)

where

g(z) = tanh(z) (1.3)

In general, the dynamics of the sensor values can be written as

xt+1 = ayt + ξt+1 (1.4)

where a is the hardware constant which can be found easily by a supervised
learning process and ξt now takes account of both measurement and actua-
tion noise (target and true wheel velocity may well differ).Using 1.1, 1.2, in
1.4 leads to the following dynamics of the SM loop

xt+1 = ag(cxt) + ξt+1 (1.5)

1.1. The feed-back strength. The SM loop is a feed-back loop, the
(linear) feed back strength being given by

R = ca

The effect of R can be seen by the following argument. We consider the case

of small z where the approximation tanh(z) = z − z3

3 can be used. Using
the first term only, one gets (ignoring the noise for the moment) from 1.5

xt = Rtx0

11



12 2. AN ELEMENTARY SENSORIMOTOR LOOP

therefore the robot slows down for 0 < R < 1 (because xt → 0 as t → ∞)
and accelerates for R > 1 ( xt increases exponentially), but this velocity can
not increase unlimitedly since | tanh(z)| < 1.The asymptotic value of x in
the nonlinear case is obtained as the solution of the fixed point equation

z = R tanh(z)

1.2. Fixed point and its stability. The FP equation

z = R tanh(z)

has always z∗ = 0 as fixed point and two other fixed points z∗ = ±q only
if R > 1.The fixed point z∗ = 0 is stable if R < 1 but it is unstable if
R > 1.The other two fixed points are stable. Using the approximation tanh

(z) = z − z3

3 , the fixed points can be obtained explicitly as

z = ±
√
3(R− 1)

R
(1.6)

The properties of the fixed points are most easily obtained by a linear
stability analysis. We put zt = z∗+ut where u is small. The state dynamics
zt+1 = Rg(zt) is linearized as

z∗ + ut+1 = Rg(z∗ + ut)

and by using Taylor expansion one gets

ut+1 = L (z∗)ut

where

L = Rg′(z∗)

One has only to show that 0 < L < 1 in order to prove that ut− > 0 as
t− >∞. Using the approximated eq. 1.6 we get

L = Rg′(z∗) = R(1− 3(R− 1)

R
) = 3− 2R

so L < 1 if 1.5 > R > 1, provided tanh(z) = z − z3

3 is valid, i.e. as
long as R close to 1. However if R >> 1 then |z| is very large and one
gets from the fixed point equation ( z = R tanh(z)) that z∗ � R , so L =
R(1 − tanh2(R)) or approximately L = 4R exp (−2R), since at large R we
may write approximately

tanh(R) =
eR − e−R

eR + e−R
=

1− e−2R

1 + e−2R
≈ 1− 2e−2R

Hence L goes exponentially to 0 as R→∞ so that the stability of the fixed
point increases with increasing R.

These results have been derived in some detail since L is the central
quantity of the time loop error,see 3.3. We have seen here that it is directly
related to the stability of the fixed points of the state dynamics. In the
higher dimensional cases L is the Jacobian matrix of the dynamical system
which is well known to give direct expressions for analyzing the stability of
the system.
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2. Including a bias

When including a bias into the controller, i.e.

K (x) = g (cx+H)

the fixed point equation is

x = a tanh(cx+H)

or

z = R tanh(z) +H (2.1)

Using the approximation of tanh(z), one gets from the above equation

z = R(z − z3

3
) +H

or

z3 − 3(R− 1)

R
z − 3H

R
= 0

The solutions of the above cubic equation according to Cardano’s formula
are

z1 = u+ v

z2 = k1u+ k2v

z3 = k2u+ k1v

where u, v, k1 and k2 are given by

u =
3

√
−q + 2

√
q2 + p3

v =
3

√
−q − 2

√
q2 + p3

where p = (1−R)
R , q = −3H

2R , k1 = −12 + i
√
3
2 and k2 = −12 − i

√
3
2 .There are

three cases depending on the value of q2 + p3:

(1) If q2 + p3 < 0, then there are 3 real solutions which are different.
(2) If q2 + p3 = 0, then there are 3 real solutions but two of them

coincide.
(3) If q2 + p3 > 0, there is only one real solution and 2 complex solu-

tions.

With a given R value, the corresponding critical value of Hc(at which
two of the real solution of the cubic equation coincide) can be found from
the equation q2 + p3 = 0, therefore the critical value of H at which a fixed
point disappears is

Hc =
2

3R

√
(R (R− 1)) (R− 1)

For instance with R = 1.5, the corresponding value Hc � 0.2.
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Figure 1. The value of the Jacobian L for −Hc < H < Hc.
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Figure 2. The value of the Jacobian L for values of H in
the case that H = Hc where there is only one stable fixed
point z > 0.

2.1. Stability analysis of the fixed points. Depending on the value
of H we have the following cases:

(1) If −Hc < H < Hc , the stability of the fixed point is determined
from the value of L = R tanh′(z∗ ). Plotting L as a function of H
in this range, one sees from the following Fig. 1 that 0 < L < 1 for
the two fixed points z1 and z2, therefore they are stable. However
the value of L for z3 is greater than 1, therefore it is unstable.

(2) If H = Hc, then there will be two different real solutions namely
z1 = 2u ( this is positive as long as H > 0, otherwise it is negative)
and the other two solutions are z2,3 = −u (negative if H > 0
otherwise positive ). For R = 1.5, z1 = 1. 154 7 and z2,3 = −.
577 35. Calculating L(z1) = −0.5 , L(z2,3) = 1, therefore z1 is
stable but z2,3 is neither stable nor unstable.

(3) If H > Hc or H < −Hc.If H > Hc, therefore there is only one
solution the stability of which can be seen from Figure 2.
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2.2. The hysteresis effect. If the system starts with a very large
negative value of H, after some time, regardless of the initial value of z, the
system will be at the negative stable fixed point. Now let us continuously
increase the value of the parameter H. Since the system was at the fixed
point when we vary H, it will stay at the fixed point until H = Hc > 0. At
this point the negative stable fixed point will become unstable, so the system
will jump to the positive stable fixed point. Increasing H further, the system
will stay at this positive stable one. If on the other hand H is decreased
again, the system will stay at the positive fixed point until H = −Hc is
reached and it is only then that the dynamics jumps to the negative fixed
point. This is can be illustrated by Fig. 3

H

state z

H

state z

Figure 3

The hysteresis effect plays a central role in the learning dynamics based
on the minimization of the time loop error, see Chapter 4.

3. Systems with delay

We have considered so far the case that the response for the sensors oc-
curs immediately after the motor command is sent to the robot. In practice
there is always a finite delay time which is about four steps in the case of
the Khepera robot. So we have to consider time-delay systems which will
be seen to display some surprising effects. In the dynamical systems ap-
proach to robotics this has not found sufficient attention so far so that we
will consider our very simple system in some detail.

3.1. Delay with one step. Let us consider a system with one step
delay, which is described by the following equation

xt+1 = ψ(xt−1) + ξt

where we use as before

ψ(x) = a tanh(cx)
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Let us define S which is called the full orbit as

S = {xt|t = 0, 1, 2, ....}

In the system without delay, i.e. if xt+1 = ψ(xt), then xt = ψt(x0), where
ψt(x) = ψ(ψt−1(x)) and so on (we drop the noise for the moment), so the
solution will be completely defined by the initial value x0. However in the
system with one step delay x0 is mapped as

xt = ψn(x0)

where t = 2n , i.e. x0 defines the values x2, x4,. . . which is the suborbit

S0 = {xt|t = 0, 2, 4, .....}

The initial value x1 is mapped correspondingly as

xt = ψn(x1)

where t = 2n+ 1, i.e. x1 defines the values x1, x3,. . . which is the suborbit

S1 = {xt|t = 1, 3, 5, ....}

The complete orbit S is composed of two independent suborbits and in
practical applications one often encounters this splitting into suborbits.

3.1.1. Fixed points of the suborbits. Let us consider of a positive feed
back loop, i.e. R > 1. The fixed point equations are xt+1 = ψ(xt−1), so if
x0 > 0 (x0 < 0), then S0 converges to the positive (negative) fixed point.
Now one can consider following different cases:

1.: x0 and x1 have the same sign, then both of S0 and S1 converge
to the same fixed point.

2.: x0 is positive and x1 negative, then S0 converges to the positive
fixed point and S1 converges to the negative one.

What was discussed about the fixed points and their stability without
delay carries over to the system with delay since the fixed point equations
stay the same and also the linearized equations which are the basis of the
stability analysis. In the simple model case where z = Rg (z) the stability
of the fixed points depends again on the value of L = Rg′ (z) taken at the
fixed point. In particular, in the case that R > 1 if one of the initial values
is positive and the other one is negative, then the positive one converges
to the positive fixed point z∗ = q, but the negative one converges to the
negative fixed point z∗ = −q, i.e. in the case of initial values with opposite
sign the trajectory S jumps between the two fixed points z∗ = ±q. This
behavior is also conserved in the case of strong noise which actually might
wash out this property, see Fig. 4
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Figure 4. The jumping of the state between the positive
fixed point and the negative one in the case of strong noise.

3.2. Delay of more than one step. Let us consider the case of a
delay of T time steps (where T = 4 is realistic in the case of our Khepera
robot), i.e. consider the system

xt = ψ (xt−T ) + ξt (3.1)

Let us call
S = {xt|t = 0, 1, , . . .}

the (full) orbit and

Sm = {xt|t = m,T +m, 2T +m, . . .} (3.2)

a suborbit of the system 3.1, where m = 0, 1, . . . T −1. According to eq. 3.1
each suborbit corresponds to a full orbit without delay. Without the noise
each suborbit is written explicitly as

xt = ψn(xm) (3.3)

where t = Tn+m and ψn stands for the n fold iteration of the function ψ.
The fixed point equation for a fixed point in orbit Sm reads

x(m) = ψ
(
x(m)

)
(3.4)

according to eq. 3.1. Of course the fixed points and their property agree
with the no delay case. As seen from eq. 3.3 the reached fixed point depends
exclusively on the initial condition for the orbit considered.

In our example where

ψ (x) = a tanh (cx)

we know that for R > 1 the sign of the FP in a suborbit is given by that of
the initial value for the suborbit. With R > 1 in the deterministic case each
of the orbits converges towards its fixed point the sign of which depends on
the sign of the starting value alone. Let us call the sequence of the signs of
the initial values x0, . . . , xT−1 the signature of the initial conditions of the
full orbit. Then, asymptotically the full orbit is a period-T dynamics with
each state xt, t = 0, 1, 2, ... at a fixed point the signs of the FPs being given
by the signature of the initial conditions.
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When including weak noise the state in each suborbit will fluctuate
around its fixed point. However if the noise is strong enough, the state
in any of the suborbits may occasionally switch sign and if the noise is not
too strong will stay there for a longer time. Hence the full orbit is an ir-
regular (modulated by fluctuations) period T behavior where however the
signature of the period can switch occasionally. This is clearly seen by the
computer simulations, see the Figures 5, ?? and Fig6. For the robot this
means that it moves for some time into one direction (all signs positive or
negative), then goes into a jumpy mode (different sings in one period), may
switch between different jumping modes (signatures) and also may return
to the steady mode and so on.
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Figure 5. Full orbit of the system xt+1 = a tanh (cxt−3)+ξt
with c = 1.2, ξ is a Gaussian noise with strength 0.15. The
system makes a transition from the jumpy to the steady
mode.
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Figure 6. The full orbit in a small intervall of time. We
see explicitly here that three of the suborbits are fluctuating
about the positive fixed point and the remaining suborbit
fluctuates about the negative fixed point.

3.2.1. How to overcome the jumpy mode. When in the jumpy mode the
velocity of the robot jumps between positive and negative values in one time
step. Physically, this is a rather nasty behavior which after some time may
destroy the robot. It is therefore of interest that this mode can be damped
by a simple averaging procedure. Let us average the input into the controller
over a time window of N steps ( where N ≤ T ), i.e. the controller outputs
are

yt = K (xt)

where

xt′ =
1

N

N−1∑
i=0

xt′−i

so that the dynamics now is

xt = ψ (xt−T ) + ξt (3.5)

instead of equation 3.1. Our computer simulations show that the jumpy
mode disappears and the state converges to the steady state, cf. Fig 7
which is without noise.



20 2. AN ELEMENTARY SENSORIMOTOR LOOP

-0.8

-0.6

-0.4

-0.2

 0

 0.2

 0.4

 0.6

 0.8

 0  50  100  150  200

x(
t)

t

Figure 7. The transition of the state from the jumpy mode
to the steady mode after using the time smoothing procedure
over N = 2 steps. The process is without noise. Initial
conditions have been x0 = x1 = −x2 = −x3 = x∗ where
x∗ = 0.65 is at the FP.

Using the time smoothing procedure with N = 4, we observe that the
transition of the state from the jumpy mode to the steady mode occurs faster
than in the case of N = 2.This can be seen by comparing Fig. 7 with Fig. 8
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Figure 8. The transition of the state from the jumpy mode
to the steady mode using time smooting process with N = 4
occurs faster (in comparison with N = 2)
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In the case of week noise we observe again the transition of the state
from jumpy mode to fluctuation around the steady state after using the
time smoothing procedure over N = 2 steps, cf. Fig. 9.
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Figure 9. The transition of the state from the jumpy mode
to the fluctuation around the steady state after using the
time smoothing procedure over N = 2 steps and using the
process with noise of strength ξ2 = 0.1. The initial conditions
have been x0 = x1 = −x2 = −x3 = 0.65, where x∗ = 0.65 is
the fixed point.

3.2.2. Experiment with the real robot. The use of the time smoothing
procedure to overcome the jumpy mode is verified practically with a Khepera
robot. We used moderate noise of strength 0.15 in order to get the jumpy
mode first and then by using the time smoothing procedure we obtain the
desired transition to the steady state fluctuation around the negative fixed
point, see the Fig. 10. The simulations have shown that the time averaging
over a short period of time reliably destroys the jumpy mode and makes the
robot behavior more steady.
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Figure 10. Stabilization of the behavior with a Khepera robot.



CHAPTER 3

The approach to self-referential systems

The present chapter will introduce the self-referential systems as a sys-
tematic approach to the self-organization of behavior for autonomous robots.
In order to do so we at first formulate the dynamical system description in a
more general context, where the robot is equipped with a simple self-model.
Then we will define adaptive systems and built on this the concept of self-
referential dynamical systems. This is followed by the discussion of some
formal properties of these systems.

1. Dynamical system formulation

In order to give a concrete example we consider a robot in a given envi-
ronment. We always deal with discrete times t = 0, 1, 2, .... At each instant
of time we observe the sensor values xt ∈ Rn. An example is the Khepera
robot with n = 10:

x = (vl, vr, IR1, ..., IR8)
T

where

• vl and vr are the wheel velocities of the left and right wheel, re-
spectively, as measured by the wheel counters.

• IRi is the value of the infrared sensor i, 0 ≤ IRi ≤ 1.

1.1. The controller. The robot has a controller with output y ∈ Rm

realized by a function K : Rn → Rm

y = K (x) (1.1)

y1, y2 being the target wheel velocities in the Khepera case ( m = 2 ). At
each instant of time t the robot measures the vector of its sensor values xt.
In the course of time we get a time series of sensor values. Our controller is
to be adaptive, i.e. it depends on a set of parameters C ∈ RC . In practice
the controller is a neural network with the synaptic strenghts and the biases
of the neurons as parameters. The behavior of the robot and hence the
nature of the time series of sensor values depends on these parameters in an
essential way.

1.2. The world model. Our robot is to have a certain ability for
cognition. We postulate that cognition is to understand what happens. The
prediction of the future sensor values requires some kind of understanding,
i.e. we use a time series predictor as the cognitive instance in our approach.

22
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1.2.1. The forward model. Prediction is realized by a forward model pre-
dicting the new sensor values xt+1 on the basis of the old sensor values xt
and motor values yt. This is realized by a function F : Rn ×Rm → Rn, i.e.

xt+1 = F (xt, yt) + ξt (1.2)

where ξt ∈ Rn is the model error. In practice we realize F by a neural
network which can be trained by any algorithm of supervised learning using
the measured values xt+1 as target outputs of the net. The most common
tool is gradient descent based on the error

E = ‖xt+1 − F (xt, yt)‖2 (1.3)

where ‖. . .‖ is the Euclidean norm in general.
Assuming that the world model depends on a set of parameters A we

may train the model by gradient descent as

∆A = −ε
∂E

∂A
(1.4)

In an on-line scenario, the set of parameters A is updated in each time step,
i.e. with each training instance given by a pair (xt+1;xt, yt) being available
at time t.

1.2.2. Modelling the dynamics of the time series. Assuming F to be
known we now may also formulate a model dynamics for the time series
of the sensor values xt. Using Eq. 1.1 in F we introduce the function
ψ : Rn → Rn where

ψ (x) = F (x,K (x))

so that the dynamical law for the time series of the xt may be modelled as

xt+1 = ψ (xt) + ξt (1.5)

where ξt is the model error again. ψ can be called a model of the time series
the robot produces by its movements.

2. Adaptive systems

The dynamics depends on the parameters C of the controller K. Chang-
ing C changes the behavior of the model. A system is adaptive if there is
an objective function measuring the distance from the current to a desired
behavior. (This might be as abstract as increasing the survival properties
of the system). One realization is parameter dynamics as gradient flow

∆Ct = −εS (xt, Ct)

where

S =
∂

∂C
E

so that we have the combined dynamics

xt+1 = ψ (xt, Ct) + ξt (2.1)

Ct+1 = Ct − εS (xt, Ct)

and we can also include the parameter dynamics of the world model accord-
ing to eq. 1.4. This involves the problem that the learning of the controller
and that of the world model influence each other. In particular the con-
troller would have to adapt in such a way that the world model is provided
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with good learning examples (pairs xt+1;xt, yt ) so that it learns as much as
possible about the dynamics of the sensorimotor loop.

The problem however is with finding the objective function E. In su-
pervised learning case we may assume that there is a teacher which in each
instant of time provides the controller outputting yt = K (xt) with a target

output y
(teach)
t so that we can use a gradient descent on the error

E(teach) =
∥∥∥y(teach)t −K (xt)

∥∥∥
2

which depends on the parameters C of the controller in an explicit way.
In general the teaching values are difficult to produce so that methods

of unsupervised learning are of much value. We are going to give a pertinent
approach in the following. The aim is at this stage of the development to
find an approach which realizes something like the self-exploration of the
behavior of the agent, in particular the self-exploration of the possibilities
of its physical body. Our approach is via self-referential dynamical systems.

3. Self-referential systems

The aim of our work is to find objectives which are entirely inherent
to the agent and not given from outside. Hence the system is to find its
own reference to the world and this is why we call them self-referential
systems. In more detail, we consider behavior as a dynamical reference to
the world. Adaptation improves this reference to the world in the direction
of a special performance (survive, e.g.). Self-referential systems on their
hand are adaptive systems which define their behavior (dynamical reference
to the world) by their dynamics alone. A special criterion is the dominance
of the internal perspective. These systems have no program, no purpose
and no goal. The aim is to create self-referential systems with emerging
behaviors which are closely related to the world the agent is acting in.

At the formal level self-referentiality is established by the requirement
that the objective function E is formulated entirely only in the sensor states
and their dynamics modelled by ψ. In particular there should be no fixed
goal states or any other domain specific information be involved in the for-
mulation of E. Before presenting the approach due to Der et al. we consider
at first some naive examples how such objectives could be obtained.

3.1. Smoothness of behavior. An example which is into our direc-
tion is given by the requirement that the robot is to move such that the
sensor values stay as constant as possible. If x is the vector of sensor values
the objective E is

E = ‖xt+1 − xt‖2

The transition from sensor values xt to xt+1of course depends on the con-
troller so E is a function of C. We could also use a larger time horizon
over which we require the sensor values to be constant. However the above
objective has the trivial ”do nothing” behavior as a stable solution, since it
keeps the sensor values constant, in a static world at least. Thus we have to
endorse the robot with a basic activity, for instance the forward velocity is
set constant and the controller has only to learn to output an appropriate
turn velocity. It has been shown in [7] by way of examples with real robots



3. SELF-REFERENTIAL SYSTEMS 25

that the objective indeed generates smooth controlled behaviors of the robot
in complex worlds. In particular stable wall following and object pushing
behavior have been observed under different conditions. This is in agree-
ment with the paradigm since under such a behavior the sensor values stay
more or less constant. However, from the point of view of the self-referential
system or the true self-organization of behavior, setting the forward velocity
is a domain related prescription which we actually want to avoid.

3.2. Predictability. Another more general approach is formulated in
control so that the consequences of the actions taken are well predictable.
This requires the availability of a world model as proposed in eq. 1.2. This
means that we consider the SM dynamics

xt+1 = ψ (xt) + ξt (3.1)

where ψ (x) = F (x,K (x)) so that x̂t+1 = ψ (xt) is the estimate of the new
sensor values given by the world model F . We use

Et+1 = ‖xt+1 − ψ (xt)‖2 (3.2)

as the error for the adaptation of the parameters. Using eq. 3.1 we find

Et+1 = ‖ξt‖2

so that there is no explicit dependence on the parameters of the controller.
In order to get a direct learning signal we must extent the estimation of the
new sensor values over more than one time step, i.e. consider

Et+1 = ‖xt+1 − ψ (ψ (xt−1))‖2 (3.3)

where x̂t+1 = ψ (ψ (xt−1)) is obtained from the iteration of eq. 3.1 with the
noise suppressed.

Obviously in both cases E fulfills the requirement that it depends only
on the sensor values itself together with the model of the state dynamics ψ.
In order to estimate the consequences of such an approach we consider the
elementary one-dimensional SM loop, xt+1 = ayt + ξt+1 or

xt+1 = ag (Cxt) + ξt+1

so that F (x, y) = ay,
ψ (x) = ag (Cx) (3.4)

so that ψ : R1 → R1 and ameasures the strength of the response of the world
to the actions of the controller. We put a = 1 in the following discussion
without restriction of generality. Using eq. 3.3 the error E is

Et+1 = ‖xt+1 − ψ (ψ (xt−1))‖2 =
∥∥ψ (ψ (xt−1) + ξt) + ξt+1 − ψ (ψ (xt−1))

∥∥2
(3.5)

Using Taylor expansion with the assumption of weak noise we get

Et+1 = ‖xt+1 − ψ (ψ (xt−1))‖2 =
∥∥ξt+1 − L (xt−1) ξt

∥∥2 (3.6)

where

L (x) =
∂

∂x
ψ (x) (3.7)

Assuming moreover that the noise is uncorrelated over the time steps and
is of zero mean, i.e. ξtξt+1 = 0 we find in the average over the noise

Et+1 = DtL
2 (xt−1) +Dt+1
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where

Dt = ξ2t

Note that we encountered L already in Chapter 2.
In the specific case of eq. 3.4 we get

L (x) = Cg′ (Cx)

so that the learning rule for the parameter C reads

∆C = −ε
∂E

∂C
= −ε

(
g′ (z) + zg′′ (z)

)
(3.8)

where z = Cx. In the generic case that g (z) = tanh (z) we have g′′ (z) =
−2g (z) g′ (z) so that the learning rule simplifies to

∆C = −εDg′ (z) (1− 2zg (z)) (3.9)

In order to discuss this we use the results of Chapter 2, i.e.

z = ±
√
3
C − 1

C
≈ ±

√
3δ (3.10)

where C = 1 + δ with 0 < δ << 1. Let us assume for a further discussion
that ε is so small that the time for the change of C is much longer than
for the dynamics of x. In that case one can assume that the state is always
converged to one of the stable fixed points so that we can use in eq. 3.8 the
value for z at the fixed point. Then we see that for 0 < C < 1 we have

∆C = −εD

meaning that C is driven towards C = 0. In order to discuss the situation
with C > 1 we must at first find the zero of the right hand side of the
learning rule, i.e.

1 = 2zg (z)

with numerical solution z = ±0.771 7 and using this in z = Cg (z) we
find numerical CCrit = 1. 191 1. Using the approximation we find instead
z = ±0.796 23 and using this in eq. 3.10 we find CCrit = 1. 211 3. Hence the
agreement is very good from the practical point of view.

Returning to eq. 3.9 we find that if C < CCrit we have ∆C < 0 so that
C is driven towards C = 0 as before. If C > CCrit we find on the other
hand that C increases towards infinity where z = ±1. What we learn from
this is that, depending on the initial conditions for C, we are driven towards
either z = 0 or z = ±1 where the fixed points have maximum stability.
This result is in agreement with our paradigm of maximum predictability of
the results of the actions undertaken since the predictability is best if the
systems stabilizes against the influence of unpredictable events like our noise
ξt.

For the robot this would mean that it either stalls as a result of the
learning procedure or moves with maximum velocity either forward or back-
ward without being able to switch between these modes of behavior. In
other word one may say that we have realized in this way an ultrastable
system in the sense of the homeostatic principle of Ross Ashby.
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3.3. The time loop error. However, an ultrastable system is not our
aim. Instead we want a robot with self induced activities which are a sensi-
tive response to the sensor values it produces by its activities. It has been
shown by the work of R. Der and his coworkers that there is a simple way
to get such a system. This consists in not using the prediction error as in
eq. 3.2 but instead the so called reconstruction error, i.e. find the recon-
structed value x̂t from the currently observed xt+1. If ψ is invertible the
reconstructed state x̂t may be defined as

x̂t = ψ−1 (xt+1) (3.11)

or

xt+1 = ψ (x̂t) (3.12)

leading to the objective

Et = ‖xt − x̂t‖2 (3.13)

With x̂ = x+ v we can also write

ψ (x) + ξ = ψ (x+ v) (3.14)

i.e. shift the input in order to correct the output of the model. If ψ is
not invertible this inverse task has in general none or even more than one
solution. In either case one tries to solve the task as good as possible, i.e.
one tries to minimize the distance between xt+1 and ψ (x+ v) so that

v = argmin
u
‖xt+1 − ψ (x+ u)‖

In the ambiguous case (several solutions) one has to provide a heuristics on
the choice of v, each choice producing a different kind of behavior of the
agent. In the present work we always will work with the invertible case.

The reconstruction error is defined in terms of the shift vector v as

E = vTv = Tr
(
vvT

)
(3.15)

where v is interpreted as a row matrix (vector) and Tr is the trace of a
matrix. E is called also the time loop error because it is the error obtained
from starting with state xt, go one step into the future by the true dynamics
and then go back by the model dynamics ψ, cf. eq. 3.11. Note that E
is a function of the current values of both the state variable x and the
parameters C of the controller and the parameters A of the world model,
i.e. E = E (xt, Ct, At).

We now define the parameter dynamics by the requirement that the
reconstruction error is minimized. Using gradient descent this leads to the
combined dynamics in the space Rn × RC , i.e. we have to consider the
dynamical system

xt+1 = ψ (xt, Ct) + ξt

Ct+1 = Ct − εS (xt, Ct) (3.16)

where S = ∂E/∂Ct and the second equation stands for the set of equations
for the parameters C.
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4. Explicit expressions

Consider the defining equation for the shift vector v

xt+1 = ψ (x) + ξ = ψ (x+ v) (4.1)

for the small noise case so that (Taylor expansion)

ψ (x+ v) = ψ (x) +L (x) v (4.2)

where

Lij (x) =
∂

∂xj
ψi (x)

is seen to be the Jacobian matrix of the state dynamics as known by the
model ψ of the sensorimotor loop. Consequently

ξ = L (x) v

and obtaining v means now ”only” to find the inverse of the matrix L. This
might cause troubles if the matrix is singular.

In the regular case (which we will assume throughout) the time loop
error is

E = vTv = ξTt L
−1TL−1ξt = ξTt

(
LLT

)−1
ξt

Introducing the correlation matrix of the noise D = ξξT (suppressing the
index t) we can also write E as a trace

E = Tr
((

LLT
)−1

D
)

(4.3)

which is sometimes beneficial for formal considerations (exploiting the cyclic
invariance of the trace). Introducing the weighted matrix norm

Tr
(
SSTD

)
= ‖S‖2D

we write

E =
∥∥L−1

∥∥2
D

(4.4)

More explicit expressions will be given below.

5. Formal considerations

The specific form Eq. 4.4 of our objective function defines a number of
properties at the formal level.

5.1. Some explicit results. Consider the time loop error of eq. 4.4.
We use

L−1 =
1

detL
L̃ (5.1)

where the matrix element L̃ij is given by (−1)i+j times the cofactor Λij
which is given by the determinant obtained from eliminating both the row
i and the column j of the matrix LT . Then

E =
1

det2 L
Tr

(
L̃T L̃D

)
(5.2)
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With uniform orthogonal noise we have the special case that D is propor-
tional to the unit matrix. Using D = σ21 (where σ2 measures the noise
strength) we obtain

E = σ2

∥∥∥L̃
∥∥∥
2

det2 L
(5.3)

Note L is the Jacobian matrix of the state dynamics as it is known in
terms of the model ψ and that detL < 1 means contracting, detL > 1 ex-
panding dynamics. Minimizing E means increasing detL while minimizing

Tr
(
L̃T L̃D

)
.

5.2. Persistence of initial values. An interesting aspect is also seen
if we use the singular value decomposition of the Jacobian matrix, i.e. write

L = SPU (5.4)

where S and U are orthogonal matrices and V is diagonal. We then imme-
diately find that

E = Tr
((

SP 2ST
)−1

D
)
= Tr

(
P 2D̃

)
(5.5)

where D̃ = STDS. Obviously the matrix U is not adapted by gradient
descending E. This is independent on the properties of the noise.

Assuming now that the noise is orthogonal and of equal strength in all
channels we see that E boils down to

E = σ2
n∑

i=1

p−2i (5.6)

where pi are the diagonal elements of P . Gradient descent will increase these
unrestricted. Adding a damping term to the gradient rule we get

∆pi = εσ2p−3i − λpi

which is converged if

p4i =
εσ2

λ
Assuming further that the dynamics is linear, i.e.

xt+1 = SPUxt + ξt

we easily see that the case that pi < 0 leads to dynamics alternating in sign in
the corresponding dimension. This is to be considered as non-physical since
the robot can not follow such rapidly changing commands. We therefore
have to initialize all pi > 0 which also means that after convergence

pi = p =
4

√
εσ2

λ
(5.7)

or P = p1 and the Jacobian matrix after convergence is L = pSU so that
the dynamics is

xt+1 = pRxt + ξt (5.8)

where R = SU is also an orthogonal matrix. Hence the state dynamics
consists of a rotation of the vector xt and a rescaling by a factor p. Note
that the rotation is persisting from the initial conditions of the matrix C.
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5.3. The exploration scenario. Interpretation: The parameter dy-
namics tends to stretch the state vector into all dimensions by the same
factor p. This could be interpreted as the tendency of looking into all direc-
tions of the space with the same attention or as the uniform exploration of
the space by the state vector.

If the noise is not uniform we may rewrite Eq. 5.5 as

E =
n∑

i=1

dii
p2i

(5.9)

where dii are the diagonal elements of the transformed noise matrix STDS.
With the damping term added the gradient descent

∆pi = εdiip
−3
i − λpi

yields

p4i =
εdii
λ

Here we see that the exploration rate is larger in the directions of strong
noise. Noting that the noise actually is the model error we can say that the
parameter dynamics is such that the dimensions of the state space where
the model is bad (large ξ) are more extensively explored than those where
the modeling is certain. This is an interesting consequence of the present
approach.

6. Fixed point flow from self-referential dynamics

Up to now only linear systems were considered. The full flavor of the
self-referentiality is seen only if the systems are nonlinear. We will in the
thesis describe a number of interesting effects and see that the behavior
modes the system are emerging from a subtle interplay between state and
parameter dynamics which depends very much on the specific realization of
the controller and the world model. However in the case that the time scales
for the state and the parameter dynamics are well separated, we can draw
some general conclusions on the behavior of the system.

Consider the case that the learning rate for the parameter dynamics
is small and that the system given by ψ has stable fixed points (or other
attractors). Consider the case of small learning rates ε in the combined
dynamics

xt+1 = ψ (xt, Ct) + ξt (6.1)

Ct+1 = Ct − εS (xt, Ct)

where

S (x,C) =
∂

∂C
E (x,C)

The dynamics 6.1 in general has two different time scales. If we choose ε
small enough the parameter dynamics can be made very slow as compared
to the time scale of the state dynamics. As is well known from synergetics
what happens is that the slow variables tend to slave the fast ones. In
particular if the state dynamics with fixed parameters has a fixed point x∗

as solution of
x∗ = ψ (x∗, Ct)
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we have
x∗ = χ (Ct) (6.2)

and
Q (C) = S (χ (C) , C)

so that
Ct+1 = Ct − εQ (Ct) (6.3)

which is a closed dynamics for C. In this way we have a separation of state
and parameter dynamics, the parameters playing the role of the master
variables which slave the state dynamics.

As a consequence, the dynamics of C generates a fixed point flow. The
state xt of the system is

xt = χ (Ct) (6.4)

However the parameter dynamics generally tends to run into the direction
of low stability (see Chapter 4), eventually fixed points can disappear, so
that the slaving principle is not any longer valid and state dynamics jumps
to another fixed point where the scenario restarts.



CHAPTER 4

One-dimensional system with learning

We studied before in Chapter 2 the dynamics of the system with fixed
parameters (c and H). In the following sections we will study the the dy-
namic of the the same system but with the learning of its parameters.

1. Parameter dynamics for the model system

Let us consider again the case that our robotic system is modelled by
the dynamical system

xt+1 = ag (cxt +H) + ξt+1 (1.1)

so that ψ (x) = ag (cx+H). The approximate solution of the equation

ψ (x) + ξ = ψ (x+ v)

yields

v =
ξ

L (x)
(1.2)

where z = cx+H,

L (x) = Rg′ (z) (1.3)

and the time loop error is

E = v2 =
ξ2

L2

the parameter dynamics for the controller is by gradient descent given as
(absorbing the factor of 2 into ε)

ε−1∆c =
ξ2

L3
∂

∂c
L =

E

L

∂

∂c
L

ε−1∆H =
E

L

∂

∂H
L

In the case of g (z) = tanh z we have g′′ (z) = −2g′ (z) g (z) so that we may
also write

ε−1∆c =
E

c
(1− 2zg (z))

ε−1∆H = −2E
c
g (z)

or

∆c = ε
E

c
(1− 2zy) (1.4)

∆H = −2εE
c
y

both z and y being taken at time t, i.e. y = g (cxt +H).

32
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What is immediately seen is that the update has a singularity at c = 0
so that this value can not be crossed by the parameter dynamics. The
case c < 0 however is specified by the fact that there we have a jumping
dynamics because of xt+1 = g (cxt) and g (z) = −g (−z) so that positive x
are converted into negative ones and vice versa. We therefore consider the
case c < 0 as non-physical regime which is to be avoided by using in the
following c > 0 as the initial condition for the parameter dynamics.

1.1. No bias. In order to better understand the system we study at
first the case that the biasH = 0. We will see that we obtain the convergence
to a fixed point slightly above the bifurcation regime. These considerations
have been already published elsewhere but are important for understanding
the higher dimensional systems so that we will give the results here in some
detail. We essentially follow the presentation in [8].

When comparing eq. 1.4 with the corresponding expression for the pa-
rameter dynamics obtained from the prediction error, see eq. 3.9 of Chapter
3 we see that the essential difference is in the sign of the update. We have
again to differ between the cases R < 1 and R > 1. Starting with 0 < R < 1
we have the fixed point z = 0 and hence

∆c = ε
E

c

which means that c is increasing and approaching the bifurcation point.
Once there the new fixed points z = ±q are emerging. With c still close to
1 the term 1 − 2zy is still > 0 so that c is increasing further and reaches
a stationary value if 1 − 2zy = 0 which as discussed earlier is the case
at c = 1.1911 where z = ±q with q = 0.7717. Using the approximation
q =

√
3 (c− 1), which is valid in leading order of δ = c− 1, we find

c =
3

2
− 1

6

√
3 = 1. 211 3

and z = 1
2

√
6− 2

√
3 = 0.796 23 as noted before.

Hence the system adapts itself to a regime slightly above the bifurcation
point. This means that the system takes decisions (it goes to one of its fixed
points) but on the other hand is still open to the environment since it can
be switched by the noise (environmental influences) to the other alternative.
The latter point would be not the case if the system is further away from
the bifurcation point.

2. Including the bias dynamics

Without bias the system is seen to converge to a simple fixed point
dynamics since the parameter for c converges. This is different if we include
the bias dynamics as well. The essential point is seen from remembering
the hysteresis properties of the loop dynamics described in Chapter 2. The
dynamics for the bias H is

∆H = −ε
E

c
g (z)

Assuming z > 0 the value of H is seen to be driven to negative values.
Because of the hysteresis effect the value of z will stay on the positive side
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until the critical value H = −Hc is reached. Then the state z will switch to
negative values which leads to an increase of the bias until the value H = Hc

is reached and the state again changes sign. As a consequence we obtain
an oscillatory system characterized by a limit cycle in the combined space
{z, c,H}. The value of c is also slightly oscillating but these oscillations are
not essential for the phenomenon since the latter are also obtained if we keep
R > 1 fixed. Atypical run of a numerical simulation is given in the Figs.1
and 2.
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Figure 1. From this graph we observe c converges after in-
creasing for some time to the value ≈ 1.2. Also in this graph
we observe the oscillations of H.
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Figure 2. From this graph we observe that the state vari-
able x start to oscillate only after c becomes greater than
1. At this point the system has two fixed points and the
learning of h will drive the system to switch between its two
fixed points.

From these figures one observe that c increases and as long as its value
still less 1, the state variable x stays at fixed point of he system which is
equal to 0 and only when c becomes greater than 1, the state variable start
to oscillate. The reason for this oscillations is that if c > 1 and H > 0, then
the state variable converges after some time to its positive fixed point (which
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is stable), but decreasing H(which is supported by its learning rule if the
state is positive) till H = −Hc as discussed in Sec.2 and Sec.2.2 will result
in the switching of the system to its negative fixed point and the opposite
will occur if H < 0 which is known as hysteresis effect.

2.1. Analysis of the oscillating system. The above findings have
been reported already in papers by Der et al. In the present thesis we
include a dynamical systems analysis. In order to keep this as simple as
possible we keep the value of c > 1 fixed (put a = 1 so that R = c here) so
that we get the combined dynamics of state and parameters as

zt+1 = cg (zt) +Ht

Ht+1 = Ht − µg (zt)

where µ = εE/c. Close to the bifurcation point z is not large so that we
may linearize g (z)→ z. We obtain the linear system

zt+1 = czt +Ht

Ht+1 = Ht − µzt

with Jacobian matrix

J =

(
c 1
−µ 1

)

with eigenvalues

λ1/2 =
1

2
c+

1

2
± 1

2

√
(c− 1)2 − 4µ

Oscillations set in if the eigenvalues become complex which is the case if

(c− 1)2 < 4ε
E

c

Independently on the value of c > 1 and the value of E (which is determined
by the noise = modeling error ξ) this can always be achieved if ε is chosen
large enough. Moreover what the result also discloses is the fact that the
frequency of the oscillations depends largely on the strength of the noise.
With µ >> c − 1 we find that the frequency (given by the imaginary part
of the eigenvalue) is proportional to

√
µ.

2.2. Learning the world model . The dependence of the frequency
of the oscillations on the strength of the modeling error will now be shown to
influence positively the learning of the world model. In practical applications
the modelling error can change over orders of magnitude depending of the
situation the robot is in. If this is one which he has not yet ”understood”
(large modeling error) it will increase the frequency of its oscillations so
that it explores the situation more actively. In the present work we do not
consider learning of the world model F (x, y) which in our simple case means
F (x, y) = ay where the constant a is to be learned. a reflects the strength
of the sensoric response to the action y of the controller. One can imagine
that a higher frequency of the robots forward and backward motion will give
more information on this constant. In more detail, let us assume that the

true dynamics is given by xt+1 = αyt + ξ
(0)
t whereas we the system uses the

constant a so that
ξ = (α− a) y + ξ(0)
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where ξ(0) is the remaining modeling errors due to true noise, e.g. Hence
the error is immediately seen to be proportional to the difference between
true and the model value of the response strength.

The parameter a can be learned by gradient descending ξ2, i.e.

∆a = κξy

and this can be learned with a constant value of y so that there is no advan-
tage from the error proportional frequency of the robot’s motion. However
the situations changes immediately if the model is a little less trivial for
instance if the sensor value has a bias, too. Assume the true dynamics is
given by

xt+1 = αyt + β + ξ
(0)
t

so that our model is to be used as F (x, y) = ay + b so that ξ = (α− a) +

β − b+ ξ(0) so that the

∆a = κξy

∆b = κξ

Using ξ(0) = 0 we obtain, in the average over the noise, the convergence
condition for the learning dynamics as ξ = 0, i.e. (assuming y �= 0)

(α− a) y + β − b = 0

which has no unique solution. The situation improves however, if y changes,
convergence towards the correct values being the faster the higher the fre-
quency of y. Hence the self-induced oscillations of the learning system proves
immediately valuable for the learning of the world model. This interaction
between model and controller learning is even more intensive for higher di-
mensional systems with more complicated world models.



CHAPTER 5

Two-dimensional systems

In this chapter we will study in some detail the case of 2—dimensional
systems. The practical application is for instance with a two-wheel robot
like the Khepera. We will see that the parameter dynamics, introduced by
our general principle, produces a number of interesting phenomena which
are of immediate importance for developmental and behavioral robotics. In
order to prepare these considerations we start with discussing the dynamics
of 2-dimensional systems with fixed parameters and introduced the learning
dynamics afterwards.

1. Dynamics with fixed parameters

We consider by way of example a robot with two wheels, equipped with
a controller K : R2 → R2 so that

yt = K (xt) (1.1)

defines the target velocities of the wheels at time t. The vector xt ∈ R2

contains the measured velocities as obtained by the wheel counters. The
controller is to be realized by a simple one-layer neural network, i.e.

K (x) = g (Cx+H) (1.2)

where g is a vector function defined by its components as gi (z) = g (zi). We
assume that the wheels essentially execute the target velocities prescribed
by the controller so that we write

xt+1 = Ayt + ξt (1.3)

where A is essentially the unit matrix (apart from some hardware constants)
in the case considered. The model error ξ contains all effects due to friction,
slip, and any noise due to discretization, measurement errors and the like.

1.1. The dynamical system. Using Eq. 1.1 in 1.3 we obtain the
stochastic, time-discrete dynamical system

xt+1 = Ag (Cxt +H) + ξt (1.4)

so that the function ψ : R2 → R2 is given by

ψ (x) = AK (Cx+H) (1.5)

The Jacobian matrix is

Lij = g′ (zi)Cij

or

L = G′ (z)C =

(
C11g′1 C12g′1
C21g′2 C22g′2

)
(1.6)

with the diagonal matrix G′ (z) = diag[g′1, g
′
2] where g′i = g′ (zi).

37
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In many cases it is convenient to formulate the dynamics directly in
terms of the activations, i.e. consider

zt+1 = H +CAg (zt) + ηt (1.7)

where
z = Cx+H

is the vector of activations (post synaptic potential) of the neurons and
ηt = Cξt. In the two dimensional system we have (rename CA as C)

zt+11 = H1 + C11g
(
zt1
)
+ C12g

(
zt2
)
+ ηt1 (1.8)

zt+12 = H2 + C21g
(
zt1
)
+ C22g

(
zt2
)
+ ηt2

(we write the time as an upper index if we consider the components of the
vector). The Jacobian matrix in this case is

Lij = Cijg
′ (zj)

or

L = CG′ (z) =

(
C11g′1 C12g′2
C21g′1 C22g′2

)
(1.9)

The difference between the two Jacobian matrices is that in Eq. 1.6 the
rows and in Eq. 1.9 the column of the matrix C are multiplied by the g′

factors. This however does neither change the trace, the determinant nor
the eigenvalues so that we can use either form in the further analysis.

1.2. The bifurcation scenario. The dynamics of the system Eq. 1.8
has been studied intensively by several authors since it may be interpreted
as the dynamics of a recurrent neural network with two neurons, cf. [44].
As is well known the eigenvalues of a two-dimensional matrix can be written
in terms of the trace T and the determinant D of the matrix as

λ1,2 =
1

2
(T ±

√
(T2 − 4D) (1.10)

The eigenvalues λ are functions of the network parameters. The dynamics
is asymptotically stable if the two eigenvalues lie inside the unit circle in the
complex plane, however it bifurcates if an eigenvalue λ — during parameter
variation — leaves the unit circle. Depending on the exact location where
λ(T,D) crosses the unit circle, the following three bifurcation types can be
distinguished:

• Saddle node (fold) bifurcation λ = 1: It creates or destroys a pair
of fixed points.

• Period doubling(flip)bifurcation λ = −1: It creates or destroys a
two-cycle from a fixed point.

• Neimark-Sacker bifurcation λ = exp(±iω) where exp(±iω) �= 1 for
both signs: It creates an asymptotically stable invariant curve with
periodic or quasi-periodic dynamics on it, depending on whether
the rotation number is rational or irrational, see [32] and the dis-
cussion below.

According to the above definitions, the boundary of the stability of the
fixed point of the system 1.6 in the (T , D) plane is given by a triangle Fig.1
bounded by the three straight lines T −D = 1, T +D = −1, D = 1. For
instance, along the line T + D = −1 (on which the eigenvalues are real
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and one of which is −1 ) there will be a period-doubling bifurcation. Along
the line D = 1, |T | < 1 (on which the two eigenvalues are complex and of
modulus 1), there will be Neimark-Sacker bifurcations from a fixed point
attractor to a periodic or quasi-periodic attractor, see [55].

1-1

1

-1

-2

2

T

D

period-doubling

   bifurcation

Neimark-Sacker

bifurcation

Saddle node bifurcation

Figure 1. The domain of the stability of the fixed point x∗

is given by the triangle bounded by the three lines T−D = 1,
T +D = −1, and D = 1.

1.3. Properties of SO (2) networks with fixed parameters. A
specific form of the above two-neuron dynamics is obtained if C is essentially
a member of the special orthogonal group, i.e.

C = uQ (φ) (1.11)

where

Q (φ) =

(
cosφ − sinφ
sinφ cosφ

)

is the rotation matrix. This is of interest since then the network becomes
a nonlinear oscillator if u > 1, cf. [45]. Moreover we will find below that
under certain conditions our learning dynamics drives the parameters to just
this structure. Let us consider at first the case of small values of z where
the system Eq. 1.8 can be linearized and one gets (dropping the noise for
the moment)

zt+1 = uQ (φ) zt (1.12)

This means that the state vector is rotated in each step with the angle φ
and multiplied by the factor u. The solution of Eq. 1.12 is

zt = utQ (tφ) z0 (1.13)
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If the starting vector is

z0 =

(
cos θ
sin θ

)

then the state vector after t iterations will be

zt = ut
(

cos (θ + tφ)
sin (θ+ tφ)

)
(1.14)

meaning that the vector is rotated by the angle tφ.
If 2π = kφ, then cos(kφ+θ) = cos(θ) and sin(kφ+θ) = sin(θ) so that the

state vector returns to its initial direction after k steps, i.e. with respect to
the direction of the state vector we have a periodic behavior with frequency
ω = 1/k or

ω =
φ

2π
(1.15)

If there is no k such that 2π = kφ we have a quasi-periodic behavior since
the angle of the state vector never returns exactly to its initial direction.

Eq. 1.14 also directly shows that the length of the state vector is de-
creasing (damped oscillation) if u < 1 and increasing if u > 1. The case of
u = 1 is of special interest since the amplitude is conserved under the dy-
namics, i.e. the vector rotates with constant length and we have a periodic
or quasi-periodic oscillation with constant amplitude.

The present considerations are valid for the linearized dynamics. This
is correct if ‖z0‖ << 1 and u ≤ 1. However with u > 1 the length of z
increases and after some time the linearization is not longer valid. However
the expansion of z is confined by the nonlinearity introduced by the function
g (z) in eq. 1.4 so that the frequency is still roughly given by eq. 1.15. More
details can be found by numerical simulations.

1.3.1. The effect of the bias on the behavior of the system. As we have
seen above, when using a C matrix with the orthogonal matrix C of Eq. 1.11
if u > 1 we get an oscillatory behavior with frequency ω ≈ φ

2π . This is true
as long as the biasH has the value 0. However we will demonstrate now that
the value of H has significant influence on the behavior. For instance when
using C11 = C22 = 1.2 and C12 = −C21 = −0.1 corresponding to φ = 0.083,
ω ≈ 0.0132 1, and α = 1.2 we observe in simulations that already when using
H as small as H1 = H2 = 0.02 the oscillations are destroyed. Instead we
have a convergence of both x1 and x2 to a fixed point as shown from Figure
2. This most sensitive dependence of the oscillations on the value of the H
vector was already observed in the thesis by R. Haschke [18], see also [19].
Interestingly, they established that the oscillatory region as found from the
theory is much larger than that obtained by computer simulations.

Our numerical studies corroborate these findings. We will see further
below that, including the learning dynamics of H into the combined system
of state and parameter dynamics, has a tremendous effect onto the the com-
bined dynamics and introduces completely new phenomena into the state
dynamics (frequency wandering, see below). The present findings path the
way for these more complicated effects.
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Figure 2. The influence of the bias h on the stability of a
limit cycle in an SO (2) network. The matrix C is of orthog-
onal structure with supercritical prefactor. Nevertheless the
expected oscillations of x1 and x2 are suppressed due to the
presence of the bias H which is as small as h1 = h2 = 0.02 .
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Figure 3. The influence of the bias H on the stability of a
limit cycle in an SO (2) network: With the biasH sufficiently
small, H1 = H2 = 0.01, the state vector is now oscillating
nonlinearly as expected from the structure of the C matrix.

2. Including learning I: The linear case

We start with the case of linear K (x), i.e.

K (x) = Cx+H
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and put A = 1, i.e. ψ (x) = Cx so that the Jacobian matrix L = C and our
fundamental equation for the time loop (reconstruction) error reads

ξ = Cv

and we remember that

E = vT v = Tr
(
vvT

)

2.1. Parameter dynamics. If the matrix C−1 exists we have the full
reconstruction error as

E = Tr
((

CCT
)−1

D
)

where D = ξξT is the correlation matrix of the noise given by its matrix
elements

Dij = ξiξj

In most cases we work with the averaged over the noise matrix. If the
noise is uncorrelated over the channels and is of zero mean this means that
D = diag[ξ21, ξ

2
2] or

Dij = δijξ
2
i

which holds also for higher dimensions.
In the present two dimensional case the inversion of C can be done

explicitly

C−1 =
1

χ

(
C22 −C12
−C21 C11

)

where the determinant is

χ = C11C22 −C12C21

so that

E = χ−2Tr

((
C222 + C221 −C22C12 −C21C11

−C22C12 −C21C11 C212 +C211

)
D

)

If D is diagonal, then

E = χ−2
((

C222 +C221
)
D11 +

(
C212 +C211

)
D22

)

The corresponding parameter dynamics however is already rather compli-
cated so that we consider special cases. However quite generally we may
say that the sign of the determinant can not be changed by the parameter
dynamics due to the singularity of E at χ = 0. In robotic applications it
is appropriate to always work with detχ > 0 since otherwise the controller
produces actions with alternating sign in the time step. We will therefore in
most cases also assume that detχ > 0 as a starting condition for the matrix
C.
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2.2. Uniform noise — Emergence of an SO (2) dynamics. Assume

uniform and orthogonal noise and ξ21 = ξ22 = 1 (by rescaling) so that D = I,
and using the gradient descent rule on E, the update rules of C simplify to
(we add again a small damping term)

∆C = −ε
∂

∂C

µ2

χ2
− γC

where the derivative is a 2× 2 matrix
(

∂

∂C
E

)

ij

=
∂

∂Cij
E

and

µ2 = Tr
(
CTC

)
=
∑

C2ij

where µ is the Frobenius norm of the matrix C. More explicitly

ε−1∆C11 =
µ2

χ3
C22 −

1

χ2
C11 − γC11 (2.1)

ε−1∆C22 =
µ2

χ3
C11 −

1

χ2
C22 − γC22

We get a similar scenario for the non-diagonal elements for which we have

ε−1∆C12 = −
µ2

χ3
C21 −

1

χ2
C12 − γC12 (2.2)

ε−1∆C21 = −
µ2

χ3
C12 −

1

χ2
C21 − γC21

The argument is based on two quantities K, k defined as

K =
1

χ2

(
µ2

χ
− 1

)
(2.3)

k =
1

χ2
(
µ2

χ
+ 1) (2.4)

where k > 0 and K = 0 if µ2 = χ, i.e. the squared norm is equal to the
determinant. Note that µ2 = 2χ if the matrix is of the orthogonal structure,
cf. eq. 1.11.

Introducing r = C11 + C22 and s = C12 − C21 we find from the update
rules that

ε−1∆r = (K − γ) r (2.5)

ε−1∆s = (K − γ) s (2.6)

Obviously both r and s increase until the condition of stationarity

µ2

χ
= γχ2 + 1

is reached. In the orthogonal case this means convergence is reached if
u4 = 1/γ due to eq. 1.11.

On the other hand, introducing p = C11 − C22 and q = C12 + C21 we
have
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ε−1∆p = − (k + γ) p (2.7)

ε−1∆q = − (k + γ) q (2.8)

which means unconditional decay until p = q = 0 is reached, i.e. until
C11 = C22 and C12 = −C21 is reached. This proves the convergence to the
orthogonal structure

C = uQ (φ) (2.9)

where

u = ‖C‖
is increasing by the learning dynamics until u = 4

√
1/γ is reached and

φ = arctan
C12
C11

converges to a fixed value depending on the initial conditions for the C
matrix.

The explicit proof of the convergence of the controller matrix to the
SO (2) structure is a first result of our analysis of the parameter dynamics
emerging by gradient descending the time loop error in a two-dimensional
system. This can also be observed in practice and means that the robot
starts to get into some kind of periodic motion. Depending on the fre-
quency, this corresponds to regular motion patterns of the robot in space.
Again this is only valid for the linearized dynamics. We will see below how
the confinement effect introduced by the nonlinearity will bring also the
explosion of u to stop after some time and produces much more complex
behaviors that that of pure oscillations.

3. Including learning II: The nonlinear case

In the linear approximation, it was proved that, under certain conditions
for the noise, the C matrix converges to an orthogonal matrix multiplied
by a factor, see Eq. 1.11. This means for the state dynamics that the
state vector will spiral outward once u exceeds the critical value 1. In the
nonlinear system there are much more different dynamical regimes which can
be realized from the combined dynamics, i.e. state + parameter dynamics.
We will show in the following that there are different kinds of limit cycles,
corresponding to both regular and irregular oscillations, and moreover that
there are also metastable limit cycles. As in the one-dimensional case, the
inclusion of additional parameters, the bias, deeply changes the nature of
the combined dynamics and introduces completely new phenomena based
on hysteresis effects. We will reestablish this situation in the realm of limit
cycles below.

For the sake of simplicity, we use in the following the case of uniform,
orthogonal noise so that the matrix D is used as D = 1. We start our
considerations with the case that the bias H of the neurons is not subject
to the parameter dynamics so that H = 0 throughout.
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3.1. Combined dynamics without bias. Let us consider now the
full dynamics given by Eq.1.4 where we use g (z) = tanh (z). The Jacobian
matrix is given by Eq. 1.6, i.e.

Lij = g′i(zi)Cij

or

L = G′ (z)C

in matrix notation. As already indicated, we do not use a bias (threshold)
in the neuron function in the present section so that

z = Cx

The parameter dynamics for the matrix element of C is as usual

∆Cip = −ε
∂E

∂Cip
(3.1)

where ε is the learning rate. Despite of these simplifications, the compound
system, consisting of the parameter and system dynamics, displays already
rather complex behavior as is seen from computer simulations. The deriva-
tives in eq. 3.1 can still be carried out explicitly so that there is no problem
for the computer simulations. We will in the following consider some specific
cases which are typical for the system.

One point of interest is that without bias the emerging dynamics depends
largely on the initial conditions for the matrix C. In practical applications
one therefore should include a small damping term in the update of C. Two
different behaviors are observed depending on the initial C. Before studying
special cases, we will give some general considerations on the nonlinear bias-
free case.

3.1.1. General properties. One point of interest is that without bias the
emerging dynamics depends largely on the initial conditions for the matrix
C. This can be seen from the following considerations. We have

E = Tr
((

LLT
)−1

D
)

and E = Tr
((

LLT
)−1)

in the D = 1 case. Similar as in the linear case

considered in Chapter 3 we use the singular value decomposition of L. In
the nonlinear case the singular value decomposition (SVD) can be made
more explicit in the case of our specific L = G′C where G′ is diagonal. We
introduce the SVD of C as C = SPU so that

L = G′SPU

With D = 1 this means that

Tr
((

LLT
)−1)

= Tr
((

G′)−2 (CCT
)−1)

= Tr
((

G′
)−2

SP−2ST
)
(3.2)

=
∑

i

(
Piig̃

′
i (z)

)−2
(3.3)

where the g̃′i (z) are the diagonal elements of the matrix SG′ST

g̃′i (z) =
(
SG′ (z)ST

)
ii
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Figure 4. In (a) we see the trajectory of the state vector
when starting with x1 = x2 = 0, learning rate = 0.005 ,
c11 = 0, c12 = −1.1, c21 = 1.1 and c22 = 0. It expands
and reaches after some time a stable period-4 cycle. In (b)
we observe that the trajectory of the state vector converges
towards a stable limit cycle. (c) shows the convergence of the
C matrix towards an orthogonal structure with appropriate
prefactor. The convergence towards the stable limit cycle is
also reflected by the behavior of the eigenvalues of the matrix
C. In (d) we observe that after small number of steps, the
imaginary part of the eigenvalue coverges to 1.2 and the real
value is almost 0.

Note that g̃′i (z) strongly depend on the parameters of S but, more impor-
tantly, they also depend on all matrix elements of C via the dependence of
G′ on z = Cx. Hence, the parameter dynamics now also has access to the
parameters of U and will change the latter in most cases whereas U was
conserved in the linear case, see Sec. 5.

As we will see, this effect is so strong that it destabilizes limit cycles
based on an orthogonal matrix C. However there is one exception, namely
that the values of g′i are the same at all instants of time. This is the case if
there is a period 4 oscillation, see Sec. 3.1.2. In most other cases we obtain
irregular oscillations, see Sec. 3.1.3.

3.1.2. Regular oscillations. In order to get the regular oscillations we
start with a matrix C close to the case of a period 4 oscillation. In particular,
we use the initial values x1 = x2 = 0, C11 = C22 = 0, C12 = −C21 = 1.1,
together with ε = 0.005, and D = 1. In Fig.4, we observe that C preserves
its orthogonal structure with the prefactor u converging after a few steps.
Also x1 and x2 oscillate regularly (periodic behavior).
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Using eq. 3.2, the nature of this specific limit cycle can be elucidated by
noting that the orthogonal structure 1.11 with φ = π/2 reads

C = u

(
0 −1
1 0

)
(3.4)

Consider the vector s = (1, 1)T and

Qs =

(
−1
1

)
, Q2s =

(
−1
−1

)
, Q3s =

(
1
−1

)
, Q4s = s

Assume that at some time t0 we have zt = αs. Introduce for t > t0

st+1 = Qst

where st0 = s and put tentatively zt = αtst. Using g (z) = tanh z we have

g (αs) =

(
g (αs1)
g (αs2)

)
= g (α)

(
s1
s2

)

for any vector s with si = ±1. For all t > t0 we have using zt+1 = αt+1st+1
(according to our presupposition)

αt+1st+1 = zt+1 = Cg (zt) = uQg (αtst) = ug (at)Qst

= ug (at) st+1

so that quite generally we obtain

αt+1 = ug (at) (3.5)

With u > 1 this converges towards a fixed point obtained by the solution of
α = u tanh (α) where with u close to one the approximation α =

√
3 (u− 1)

is valid, see Sec. 2. Obviously for any coupling strength u > 1 there is an α
so that the dynamics of z boils down to

zt+1 = Qzt (3.6)

with

zt0 = αs

This result has an important consequence for the parameter dynamics
of C. In fact, due to eq. 3.6 the components zi of the state vector z are
changing only there sign under the update dynamics so that g′ (zt) = const
and the components g′i = 1−g2i of the vector function g′ (z) are of the same
value, g′i = 1− tanh2 (αt). The Jacobian matrix for

xt+1 = g (Cxt)

is

L = G′ (zt)C = u
(
1− tanh2 (αt)

)
Q

and with orthogonal and uniform noise (D = ξ2) we obtain the time loop
error as

E =
ξ2

u2
(
1− tanh2 (αt)

)2 =
ξ2

Λ2
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which is independent on the matrix elements of Q. The dependence on the
parameter u of C is given via eq. 3.5 so that using eq. 3.5

∆u = ε
E

Λ

∂ug′ (αt)

∂u
= ε

E

Λ

(
g′ + ug′′ (αt)

∂αt
∂u

)

= ε
Eg′

Λ
(1− 2ug (αt) g (αt−1))

With α taken at the respective fixed point (slow learning rate 0 < ε << 1)
we find using the fixed point relation α = ug (α) that u is stationary where
1 = 2αg (α) from which u is obtained as u = a/g (α). This repeats more or
less the arguments of Chapter 4, from where we know that u = 1.1911.

In concluding one may say that, once the matrix C is of the form eq.
3.4, the learning leaves the matrix Q invariant (at least is stationary with
respect to Q) and the feed-back strength factor u converges towards a value
slightly above the bifurcation point where the Sacker-Neimark bifurcation
takes place. The fact the specific form of Q is indeed a stable fixed point of
the learning dynamics is seen from the computer simulations where the four
cycle is found to be an attractor with seemingly a large basin of attraction.

In general, we may say that, without bias, the classical Sacker-Neimark
bifurcation is emerging in the combined dynamics in the case of period 4
oscillations, i.e. if the initial conditions of C are appropriate. In most other
cases we get more or less irregular oscillations, see the following.

3.1.3. Irregular oscillations. We have discussed that the combined dy-
namics of state and controller parameters will end up in a stable 4-cycle
when starting close to the special orthogonal structure 3.4. If one is suffi-
ciently far away from this one gets the phenomenon of irregular oscillations
which are of different nature in that they are not supported by the spe-
cial form of the C matrix but emerge from a pure interplay of the state
and the parameter dynamics in a similar way to the effects observed in the
one-dimensional system with bias dynamics. Using for instance the values
x1 = x2 = 0, ε = 0.005, D = 1 and

C =

(
1 0.2

0.05 0.7

)

as initial condition, one observes from Fig.5 that the matrix C does in fact
not converge to any orthogonal structure. Instead the non-diagonal matrix
elements are seen to oscillate coherently. The system dynamics is seen to
exhibit irregular oscillations which are very sensitive to the noise. It is to be
noted that the oscillations result from the combination of both the state and
the parameter dynamics. As a consequence the frequency of the oscillations
depends on the value of ε and the strength of the noise.

The oscillations can be understood by the results of the one-dimensional
systems with bias, where we have seen, that due to the nonlinearity, the
bias is driven such that the nonlinearity is decreasing. As a consequence,
the bias is always moving such that the fixed point is destabilized more and
more until the state jumps to the other fixed point of the bistable system.
Together wit the hysteresis property this leads to an oscillation of the state
dynamics. We observe here a similar scenario, where each neuron uses the
output of its neighbor as a secondary input which acts as a kind of bias.
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           (a) 
  (b) 

Figure 5. From (a), we observe that x1 and x2 exhibit ir-
regular oscillations.The initial conditions which are used x1
= x2 = 0, learning rate = 0.005 and c11 = 1, c12 = 0.2,
c21 = 0.05 and c22 = 0.7. In (b), we observe that the c ma-
trix does not converge to the orthogonal structure, instead
the non diagonal elements of c oscillate with about the same
value.

Note that we may consider the parameter H in the one-dimensional case
also as the synaptic weight of a secondary input of strength 1 (called a tonic
input in neuroscience) into the neuron.

This combined dynamics phenomenon is of some interest for the practical
applications since it makes the dynamics particularly sensitive to the effect of
the noise. Please remember that noise means in our case the modeling error
so that the system may be said to be particularly sensitive to the relation of
the behavior to the environment which is measured by the modeling error.

3.1.4. Switching oscillators. Besides the irregular oscillatory behavior
we still observe another dynamical regime which we call the switching os-
cillatory regime. This one is obtained for example when starting form an
orthogonal C with φ �= π

2 , in the simulations we used

C =

(
1.1 −0.1
0.1 1.1

)

The regime is qualified by the fact that one neuron is oscillating, while the
other one is fluctuating around a fixed point. Then in irregular time intervals
the two neurons change their role, see Fig. 6.

As seen from the figures, the phenomenon is based on the fact that the
diagonal element (which is regulating the feed-back strength in the loop) of
the fixed state neuron is a little higher, which is seemingly sufficient in order
to keep the neuron at the fixed point. When the oscillator is switched, the
role of the diagonal elements are switching as well so that the other neuron
is kept fluctuating around the fixed point.

The oscillations are again of a similar nature as that in the one-dimensional
case. In the present situation the oscillating neuron uses the more or less
constant output of the other neuron as a kind of tonic input, i.e. the oscilla-
tions of the non-diagonal element, coupling the oscillating to the fixed state
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(a)  (b) 

Figure 6. In (a), we observe that at different time steps
each of x1and x2 makes a transtion between two different
regims namely oscillation about one of the fixed points and
the other one is the oscillation between the fixed points. From
(b), we observe that the diagonal elements allmost have the
same value and the nondiagonal elments oscillate about 0.

 

    (b)      (a) 

Figure 7. As we observe from (a), in the beginning
x1oscillates and x2 stays at the positive fixed point. How-
ever by increasing the noise strenght at step 590 , x2 leaves
the fixed point and start to oscillate.From (b), we observe
that the diagonal elementes of C oscillate about 1.2 , while
the nondiagonal ones oscillate about 0 and have the same
sign.

neuron, correspond to the oscillations of the bias in the one-dimensional
case.

The effect of noise on the switching oscillators: The attractor of
the system of switching oscillators has a small basin of attraction because in
the simulation we observe that a little increase of the noise strength makes
the system leave this attractor. A typical run is depicted in Figure 7.
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4. Including the bias dynamics

In the one-dimensional system we have seen, that the inclusion of the bias
dynamics introduces hysteresis effects which change the fixed point system
into a limit cycle. Similar effects are to be expected in the two-dimensional
case. Let us consider the state z as

zi =
2∑

s=1

Cisxs +Hi (4.1)

the bias Hi being updated now also by gradient descending the error E, i.e.

∆Hi = −ε
∂E

∂Hi

The introduction of the bias enriches the combined dynamics (system plus
parameter dynamics) tremendously. In order to get some systematics into
the wealth of phenomena we at first keep C fixed and study the effect of
updating H only and then we will study the behavior of the system by
updating both C and H

4.1. Bias dynamics in an SO (2) network. We have seen in Sec.1.3.1
that, depending on the value of H, the system either exhibits nonlinear
oscillations of fixed frequency or it converges to a fixed point. Including the
dynamics of H results in an interesting behavior, namely that there coexist
two limit cycle attractors with different frequencies, with basins of attraction
defined in terms of the initial values of H and x. In the simulation, we use
an orthogonal structure

C = u

(
cosφ sinφ
− sinφ cosφ

)
(4.2)

We choose φ so that the linear system would correspond to a frequency of
≈ 0.01 Hz. The nonlinearity is seen to produce two different behaviors of
the system depending on the initial conditions on H (small values) or x. In
the first we get a regular oscillation with a frequency ≈ 0.02 Hz, i.e. much
higher than that dictated by the matrix C (≈ 0.01), which would be realized
with H = 0 fixed. This one is realized however in the second case.

The different nature of these two scenarios is understood by looking at
the phase shift between the state variables. In the high frequency case the
phase shift is in accordance with that given by C as seen from Figure 8 (a),
whereas in the second case the phase shift is the opposite one as seen from
(b) of the same Figure. This demonstrates the relevance of the phase shift for
the frequency of the oscillatory behavior. The phase shift in an essential way
influences the interplay between the state and the H dynamics, therefore it
is responsible for the different frequencies of the limit cycle attractors.

The decisive influence of the phase shift on the behavior of the system
will be seen to play an essential role also in the more complicated cases
considered below. Thus this seems to be an essential ingredient of the present
approach. In particular, one may use the phase shift in order to switch
between these two limit cycle attractors. In other words this opens the
possibility of the robot to react in a definite way to environmental influences.
In fact, if the system is in one of its attractors, a simple shift in phase between
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(b) (a) 

Figure 8. (a) shows that x1 and x2 oscillate with higher
frequency than that calculated from the used matrix c . The
phase shift between x1and x2 is in accordance with that dic-
tated by the used c. The graph is obtained under initial con-
dition x1 = x2 = 0, h1 = h2 = 0, learning rate = 0.005,
regularization factor = 0.1, c11 = 1.2, c12 = −0.1, c21 = 0.1
and c22 = 1.2. However (b) shows x1 and x2 oscillate with
frequency ≈ 0.01 that calculated from the used matrix c.The
phase shift between x1and x2 is the opposite of that dictated
by the used c. The used initial values are x1 = x2 = 0 ,
h1 = 0.01, h2 = 0.0, learning rate = 0.005 , regularization
factor = 0.1, c11 = 1.2, c12 = −0.1, c21 = 0.1 and c22 = 1.2 .

the sensor values x1and x2 may lead to a switching of the frequencies making
the robot to try a different dynamical regime.

4.2. Full parameter dynamics. Frequency wandering. We are
now going to study the combined dynamics of state and parameter variables,
i.e. that of x, C, and H which takes place in a 8-dimensional space. The
most interesting effect when including the bias together with the C dynamics
was discovered from computer simulations. At the phenomenological level
the effect can be considered as if the system wanders through its different
frequencies and we call it therefore the frequency wandering effect.

In order to understand how this effect is produced we consider a typical
run of a numerical simulation as given in the Fig.9. The first observation
is that, most over the time, the matrix C essentially realizes an orthogonal
structure like eq.4.2. However the non-diagonal elements of Cand hence the
angle φ are not constant but display also a periodic behavior on a much
larger time scale. Formally, this is the reason for the frequency wandering
since the angle φ of the orthogonal matrix is connected with the frequency.
However, we also see that there is no unique relation between φ and the
frequency of the state oscillations. Instead there are again two possible
frequencies related with each angle φ.

However we have already seen in Sec. 4.1, where the C matrix was fixed
and only the H dynamics included, that in the nonlinear system this relation
is valid only if the phase relation between the states is in agreement with
the one given by the C matrix, see Sec. 4.1. In the present case of the full
dynamics in the x,C,H space the interplay between the variables is of still
more complicated nature.
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Let us start the discussion with Fig. 9 (a) where we see in the time 1
: 1700 one half-period of the C parameter cycle. In this region the non-
diagonal elements at first increase from zero to some maximum close to
1 (corresponding to an increase of the angel φ) and then decrease again
to zero. As discussed above, the frequency of the state dynamics should
roughly be given by ω = φ/2π. This relation between φ and the frequency
of the state oscillations are indeed observed in the time interval where the
angle φ decreases, i.e. time steps 940:1700.

However this is not the case during the first half of this time region (1 :
940) where the angle φ increases but the frequency decreases, see (c) Fig.9.
This effect is understood if we look at the phase relations between the state
variables x1and x2. In the region 1 : 1700 the angle φ is always negative
so that the phase relation between x1 and x2 is such that x1 precedes x2.
However this is only the case in the second part of the interval considered,
i.e. 900 : 1700 where one could say that the dynamics is as it would be
without the additional H dynamics, see (a) and (d) of Fig.9.

However in the first interval the phase relation is inverted what can only
be understood by stipulating an interplay between the state and the bias
dynamics. Apparently the H dynamics counteracts the state dynamics gen-
erated by the SO (2) like structure of the controller matrix C. The interplay
is such that the frequency decreases although the angle of rotation φ steadily
increases. A further interplay between state and parameter dynamics is also
obtained in the interval 900 : 1700 seen by the steady decrease of the fre-
quency during the time evolution of the system. This effect could not be
obtained from the H free dynamics studied in Sec. 3.1 since there is no such
systematic change of the frequency once the orthogonal structure is reached.

4.2.1. Stability of the frequency wandering effect. We have found the
above behavior for the special initial condition for C, cf. Eq. 4.2. In order
to discuss the stability of the phenomenon we used different matrices C as
initial conditions. In all cases we observed the same phenomenon so that we
may say that it is largely independent on the choice of the initial C.

However the number of steps after which the system exhibits this be-
havior depends on the initial C. In Fig10 two different initial C are used in
order to demonstrate this.

4.2.2. Discussion. The inclusion of the bias dynamics obviously has dra-
matic effects on the combined dynamics and thus on the behavior of the
system. There is an interesting parallel to the one-dimensional case. In
the latter we have seen, that without H dynamics the system converges
towards a fixed point. The role of the H dynamics was seen to produce
a smooth switching between the fixed points so that altogether a periodic
motion resulted.

In the two-dimensional case considered here without bias dynamics the
system in the majority of cases converges towards a stable limit cycle be-
havior, see Sec. 3.1 the frequency of which essentially depends on the initial
conditions. The role of the bias dynamics was seen to change in a periodic
way the frequency of the limit cycle so that we can say that the system
self-organizes a sweep through its limit cycles and in this way explores its
dynamic possibilities.
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(c) 

(a) (b) 

(d) 

Figure 9. In (a), we observe that the matrix c converges
to an orthogonal structure in which its nondiagonal elements
change periodically and h exhibits oscillations with periodi-
cally changing amplitude. The amplitude of h is large in the
region of the ”wrong” phase relation between x1and x2 .Af-
ter this the matrix c generates high frequency oscillations so
that the h dynamics can not follow. The graph is obtained
under initial condition x1 = x2 = h1 = h2 = 0 , learning
rate = 0.005, regularization factor = 0.1 , c11 = 1, c12 = 0.2,
c21 = 0.05 and c22 = 0.7. In (b),we observe that x1, x2 ex-
hibit oscillations with a non constant frequency .The chang-
ing of this frequency is influenced by h.In (c), we observe
that x1 preceedes x2- in the period 0:900- which coresponds
to a anticlockaise rotation (positive angle increase). However
this is the opposite of what is expected from the sign of angle
of rotation (blue dotted line) which is negative. This shows
that the h dynamics must have an essential influence on the
rotation. As a result the we observe a deacreasing frequency
in the period 0:900. In (d) x2 preceedes x1 in this period as
expected from the sign of the angle of rotation. Hence the
dynamics is governed essentially by the matrix c so that the
h dynamics has no essential effect.
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(a) (b) 

Figure 10. In (a) we observe that x1, x2 start to oscillate
after 100 steps (the initial condition was x1 = x2 = h1 =
h2 = 0, learning rate = 0.005 , regularization factor = 0.1,
c11 = 0.5, c12 = −0.1, c21 = 0.7 and c22 = 1 ). However (b)
shows that x1, x2 start to oscilllate after 200 steps(the initial
condition was, x1 = x2 = h1 = h2 = 0, learning rate = 0.005
, regularization factor = 0.1, c11 = 0.1, c12 = 0, c21 = 0 and
c22 = 0.2.

5. Correlated noise

The influence of the noise (modeling error) on the dynamics is of much
importance for the practical applications. For a discussion we consider in
the following the role of correlations of the noise in the different channels.
We use for this purpose again uniform noise, i.e. ξi, i = 1, 2 is randomly
chosen from the interval [−0.1, 0.1]. We consider at first the case of no bias
so that the dynamics is entirely determined by the matrix C.

5.1. Parameter dynamics without bias.

5.1.1. Correlated noise. As the first case we consider correlated noise
obtained by choosing the ξi randomly, the correlations being introduced by
inverting the sign of one of the two noise components so that the signs are
the same. Studying the above system using correlated noise shows that both
of x1 and x2 will also be correlated as shown from Figure 11 (a).

Although the noise is rather weak, these correlations are quite strong so
that the states are synchronized, as is seen from Fig. 11. The state dynamics
is again coupled to the parameter dynamics by the combined dynamics effect.

5.1.2. Anticorrelated noise. If we choose again the noise randomly but
anticorrelated the signs of the noise variables, we find the behavior depicted
in Fig.?? which clearly demonstrates that x1 and x2 will be anticorrelated
as well. Comparing (a) with (b) in that Figure we recognize the combined
dynamics effect again. Moreover by comparing Fig.??(b) and 11(b), we
see that the correlations in the noise also strongly influence the interplay
between the parameter and the system dynamics. While in the latter case
(anticorrelated noise) the diagonal elements are correlated with the diagonal
ones they appear anticorrelated in the former case.
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(a) (b) 

Figure 11. (a) shows the correlation of x1, x2 under cor-
related noise, (b) the corresponding C matrix. We observe
from (b) that the nondiagonal elements of C will be anticor-
related with the diagonal ones.

 

(a)  (b) 

Figure 12. (a) shows anticorrelation of x1, x2 under anti-
correlated noise. (b) shows the corresponding c matrix . We
observe from (b) that the non diagonal elements of c will be
correlated with the diagonal ones.

Discussion: As already mentioned the dynamics is without bias. However
as seen in the Figures there are oscillations of the state variables x1 and x2
which are different from the regular oscillations obtained with an orthogonal
structure. Instead, similarly as in Sec. 3.1.3, the oscillations of the state
result from the oscillations of the non-diagonal elements of C. However the
correlations in the noise make the non-diagonal elements nearly identical.
The difference between the correlated and the anticorrelated case is in the
phase relation between the diagonal and the non-diagonal elements of C.

In any case we see that the correlations in the noise have decisive influ-
ence on the dynamics of the combined dynamical system. This is a desirable
effect from the point of view of robotics since it shows that the system de-
ploys a rich dynamics which however is still related to the environment, in
particular via the modeling error of the world model, so that we may say
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that the system actively explores itself and its environment in order to im-
prove the world model, see the related discussion with the frequency effect
in Chapter 4 on one-dimensional systems.

In the following section the effect of the noise on the behavior of the sys-
tem in which both the C and H parameters are learned. First we study the
behavior of the system using anticorrelated noise and second the correlated
one.

5.2. Parameter dynamics with bias. Including the bias dynamics
was shown to enrich much the sensitivity of the system because in the sim-
ulation different behaviors are observed depending essentially on the actual
values of the state, the parameters of the system and the noise. In order to
introduce the phenomena we consider a simulation run as depicted in Fig.
13. One of the behaviors that the system can exhibits that is observed in
the period [60:38000]. In this period the C matrix has real eigenvalues - as
indicated from Fig. 13(a)-but x1 and x2 oscillate regularly, therefore this
oscillations can only be a result of the interplay between the state and the H
dynamics. In this period we observe also that x1and x2 are anticorrelated,
see Fig13(b). This anticorrelation between x1and x2 can be understood as
an effect of the noise only, because in 3.1 there was a phase shift between
x1and x2.

Another behavior that the system can exhibit that is observed in the
period [38000:40000]. In this period we observe that the C matrix has
another structure which has complex eigenvalues. Also x1 and x2 oscillate
with continuously decreasing frequency and phase shift is not as dictated by
the actual C matrix.

The last behavior is that observed in the period [40000:40500]. In this
period we observe that the matrix C has almost the same value as in the
previous period, however x1and x2 oscillate with high frequency and phase
shift as dictated by the current C matrix.
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  (a) (b) 

(c) (d) 

   (e) 

Figure 13. (a) shows that depending on the actual state
of the system, the c matrix may make a transition from a
structure that does not support the oscillation of the state
variables to that one support the oscillations of the state
variables.From (b) we observe that after number of steps-
depending on the actual condition- x1and x2 oscillate regu-
larly whereas the c matrix in this period has real eigenval-
ues.Also we observe in this graph that x1and x2 are anticor-
related.(c) shows that in the period 38000:39800 we observe
that x1and x2 oscillate with continously decreasing frequency
and the phase shift is the opposite that dictated by the actual
c matrix.(d)shows the period 40000:40470 , in this period we
observe that x1and x2 oscillate with high frequency and the
phase shift is that dictated by the actual c matrix.The inital
condition was x1 = x2 = 0 , h1 = h2 = 0.0 , learning rate
= 0.005 , regularization factor = 0.1 , c11 = 1, c12 = 0.2,
c21 = 0.05 and c22 = 0.7.

Discussion:

We see that in Sec. 4.2 that there is a systematic and periodicity change
of theC,H and of the frequency of oscillations of the state variables, however
including the anticorrelated or correlated noise influences this systematics
essentially. In fact, as seen above the actual state of the system determines
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whether it goes into the anticorrelation or correlation regime or into high
frequency regime with correct (with respect to C) phase shift or into the
low frequency regime with wrong phase shift.

6. Application - The barrel robot

The frequency wandering effect can also nicely be seen in applications.
By way of example we consider a simplified version of a spherical robot, the
rolling barrel as constructed by Georg Martius in ODE. Inside the barrel
(cylinder) we have two orthogonal axis with a mass on each driven by a
linear motor. The two controller outputs set the position of the masses and
the sensor values are the angles of the axis with the z-axis of the space
coordinate system (inclination angles). The world model has to predict the
new sensor values given the controls y and we use a linear model as before,
i.e.

xt+1 = Ayt + ξt+1

the matrix A being trained on-line by gradient depending the error function

U = ‖xt+1 −Ayt‖2 (6.1)

The system is started in a tabula rasa condition for both the world
model and the controller, meaning that both of them are initialized as the
unit matrix with small random non-diagonal matrix elements. Learning
runs parallel for both model and controller as described above. The ef-
fect of the combined state and parameter dynamics is seen in the video
http://robot.informatik.uni-leipzig.de/Videos/Barrel/2006/barrel.avi.
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Figure 14. The sensor value x1 (t) in the time interval 2500
until 4000 together with the values of H1 (dashed line). The
region covers the event where the robot from a very high
speed mode slows down actively and then inverts its veloc-
ity and rolls backward with increasing velocity. The sensor
measures the angel of one of the internal axis with the space
coordinate system so that the frequency of the sensor values
directly measures the rolling velocity of the barrel.

The barrel is seen after an initial period of some indecision to start a
rolling motion with constantly increasing velocity1. Then after some time
it starts decreasing the velocity and eventually stops and rolls backwards
in the same scenario. This repeats more or less periodically. On the phe-
nomenological level one might say that the robot is able to both accelerate
and brake or that it actively investigates its space of velocities.

1I thank Georg Martius very much for the computer simulations.
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Figure 15. The time course of the controller matrix C in
the time interval of slowing down, stopping and accelerating
again with inverted velocity. The diagonal matrix elements
are C11 ≈ C22 whereas C12 ≈ −C21 so that we have essen-
tially an orthogonal matrix with a rotation angle continu-
ously changing over time over the full range −π < φ < π,
ngative values of φ corresponding to the deceleration phase.
This is the frequency wandering effect with an embodied
agent.

When looking at the time evolution of the C values, one recovers the
effect observed in Sec. 4.2 with the hypothetical system, i.e. a system
without physical embodiment, whereas the barrel is a massive object with
quite a complicated physics due to the shifting masses driving it. Although
qualitatively similar to the agent without embodiment, there are also clear
differences, in particular in the change of the C matrix, which, with the
specific matrix structure realized in the simulations, may be qualified by the
angle

φ = arctan
C12
C11

in a good approximation. In the non embodied case the angle changed
between −π/2 < φ < π/2 whereas now it is seen to vary through the entire
range of φ values, i.e. using that the C matrix is given by φmod2π we have
φ values as −π < φ < π.

In particular because of its large mass there are strong inertia effects,
which have to be dealt with by a controller that wants to roll the barrel with
differing velocities in a closed loop control paradigm based on the sensor
values which are the angles of the internal axes. The emerging strategy of
the controller obviously is to rotate the angle φ in order to accelerate and
decelerate.
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Figure 16. The behavior of the C matrix over a very long
interval of time. Most of the time we have the orthogonal
structure, where C is essentially a rotation matrix, C11 ≈ C22
whereas C12 ≈ −C21 so that rotation angle φ periodically
wanders through the full intervall−π < φ < π, ngative values
of φ corresponding to the deceleration phases.



CHAPTER 6

Three-dimensional systems

In Chapter 5 we investigated the two-dimensional system and we showed
that the system exhibits interesting properties. In particular, the system was
shown to actively investigate its space of possibilities. For instance, it is able
under certain conditions to sweep through its range of accessible frequen-
cies. In the application with the barrel bot this lead to the emergence of
a controlled acceleration and deceleration of the rolling mode. In other
applications demonstrated by the videos on http://robot.informatik.uni-
leipzig.de/research/videos/ the robots are seen to try different modes of
motions to explore itself or to feel its body.

The investigions in Chapter 5 have largely been centered on the pec-
ularities of the two-dimensional system, in particular the structure of the
orthogonal matrix. In the present chapter we try to investigate the three-
dimensional system in order to see which of those properties survives in
the new context. We use the same paradigm for the gradient flow of the
parameters of the controller, i.e. we study a system with dynamics

xt+1 = Ayt + ξt+1

where the noise ξ (model error) has mean zero but may be of any kind. The
3× 3 matrix A measures the response of the sensors to the actions y ∈ R3

of the controller where

yt = K (xt) = g (Cxt +H)

with C a 3 × 3 matrix and g a vector function, defined by gi = g (zi) with
z = Cx+H. We write AK (x) = ψ (x) as before, find the shift vector v by
the solution of

ξ = L (x) v

where

Lij =
3∑

k=1

Aikg
′ (zk)Ckj

which in matrix notation reads L = AG′ (z)C with the diagonal matrix
G′ (z) = diag[z1, z2, z3]. The time loop error reads as before

E = vT v = ξT
(
LLT

)−1
ξT = Tr

((
LL−1

)T
D
)

The inversion of the matrix LLT can still be done explicitly so that one gets
an explicit expression for E in terms of the parametes of the matrix C and
H. The updates

∆C = −ε
∂

∂C
E, ∆H = −ε

∂

∂H
E

have been obtained in the computer program by numerical differentiation.
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1. General observations

Let us consider for the moment the case of uniform and orthogonal noise
so that D is proportional to the unit matrix. As explained in Chapter 5 if
we have an orthogonal structure for C, i.e.

C = u Q (α, β, γ)

where QT = Q−1 is an O (3) matrix depending on three parameters, the
time loop error is in the linear case (g (z) = z)

E =
1

u2
Tr (D)

so that E does not depend on the parameters of Q. As we have seen in
2-d, see Chapter 5, the nonlinearities destroy this independence so that the
parameters change under the gradient dynamics.

Many of the phenomena present already in two dimensions survive also
in the three-dimensional case, but we can give here only a narrow outlook
on these phenomena. We concentrate on the case of the regular oscillations
and the frequency wandering effect.

2. Regular oscillations

Suppressing the bias learning, we observed in Chapter 5, that under
certain condition, the system converge to a stable cycle of period 4. The
reason was that when applying a matrix C which is essentially a rotation
about an angle φ = ±π/2 on a vector with components of equal absolute
value, the effect of C is just a sign flip of certain components of the vector.
This is of course also possible in the d-dimensional cases. In fact this means
that one has to find an orthogonal transformation Q so that Qn = I and

sTQs = d

where |si| = 1 ∀i = 1, ..., d. Obviously the number of possibilities and
the value of n increases with increasing dimension so that with increasing
dimension, there are more and more possibilities for our system to support
an n-cycle which is stable under the combined dynamics. In the simulation
we observe that in the 3-dimensional system, the learning rules drive the
parameters to regions of different cycles of the system, indeed. The cycle
attracted to depends on the initial conditions of the parameters and the
state and also on the noise. Moreover we observe, that under stronger noise
the system may also switch between different cycles. In Figure 1, we see two
different cycles exhibited by the system in two different periods of time, (c)
displaying the C value during these two period.

A preliminiary result of our simulation is that seemingly cycles of lower
periodicity are more stable than the higher ones.

3. The frequency wandering effect

As in the two-dimensional case the stable limit cycle behavior is obtained
if the dynamics of the bias is swiched off. When including the latter we
get again the frequency wandering effect, however in a modified form. A
typical run of a numerical simulation is given in Figure 1(a). In this graph,
four distinct regions can be distinguished. In the first region 1500:1800,
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    (a) (b) 

    (d) 

Figure 1. In (a) we see the period-6 cycle exhibited by the
system in the interval of time before 4000 . In (b) we see the
period-4 cycle exhibited by the system in the interval of time
after 4000. (d) shows the values of C in the period during
which the system makes the transition between its two cycles.

we observe that x2, x3 oscillate with very low frequency while x1 oscillates
with higher frequency. Also we observe that the phase shift between x2,
x3 is such that x3 precedes x2, see (d ) in the that figure. In the second
region 1800:2200, x2, x3 oscillate with very high frequency at the beginning
followed with continuously decreasing one and the phase shift is opposite to
that of the previous period, but x1 still oscillates with the same frequency
as in the in the first regions. The third region 2600:3000 is characterized
by the oscillation of x1 and x3 with very low frequency and the phase shift
between them is such that x1 precedes x3, while x2 oscillates with higher
frequency. In the fourth region, x1, x3 oscillate with very high frequency
at the beginning. Then the frequency is decreasing and the phase shift is
opposite to that of the third region, see (b). However, x2 still oscillates with
the same frequency as in the in the third region.

Figure 2 demonstrates that the frequency wandering effect is also present
in the three-dimensional system, however it does not involve all three neu-
rons but instead realizes in subsystems of two neurons, with a switching
between the subsytems after some time. As in the 2-d system, the effect
is found to be rather stable, i.e. it emerges under a broad range of initial
conditions provided the noise must not be too strong.
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(a) 

(b) (c) 

(d) 
(e) 

Figure 2. The frequency wandering effect in three-
dimensional systems, (a) showing the state variables in the
time interval 1500 through 3200, (c) and (e) the matrix ele-
mens of C for the 1-3 and the 2-3 submatrices, respectively.
From (e) we see that in the time interval 1500 through 2200
we have the frequency wandering effect between neurons 1
and 3 whereas the effect switches afterwards to the subsys-
tems of the neurons 2 and 3, see (c). Figures (b) and (d)
display the state variables in the time intervals 2800 up to
3100 and 1500 to 2200 which are the pertinent regions for the
frequency wandering phenomenon. These figures also make
the relation between the phase shifts clear in the sense ex-
plained in the two-dimensional case.



CHAPTER 7

Natural gradient parameter dynamics

So far we have used the ordinary gradient descent of the error function
in the learning. As it is well known, the gradient of a function gives the
steepest direction of this function, but this is helpful only if the parameter
space of this function is the Euclidean space with orthonormal coordinate
system. In the other cases when the parameter space is not Euclidean and
has the Riemannian metric structure, the optimal direction for descending
the function is given by another gradient namely the natural gradient as
introduced by Amari into the learning theory, see [1]. The natural gradient
method will be seen to help us in restructuring the general approach such
that the exploration properties of the robot can be modified into desired
directions by defining an appropriate metrics in the parameter space.

1. The natural gradient method

Let S = {w ∈ Rn} be the parameter space on which a function E (w )
is defined and S is a nonlinear manifold, then the length of a vector w in
parameter space is defined as

‖w‖γ =
√∑

i,j
γijwiwj

where Γ = (γij) is called the Riemannian metric tensor which depends in
general on w and the space is called Riemannian space. In the following
we will prove that the steepest ascent direction of E(w) in a Riemannian

space is given by the natural gradient ∇̃E(w) = Γ−1∇E(w) where Γ−1 is
the inverse of the metrics Γ and

∇E =
∂E

∂w
= (

∂E(w)

∂w1
, ...,

∂E(w)

∂wn
)T

is the ordinary gradient as used before.
The optimal direction for descending E (w) at w is defined by the vector

dw that maximize E(w+dw)−E(w) under the constraint ‖dw‖2γ = ε2 with
ε a small constant. Using the Lagrangian method we want to maximize

{E(w + dw)−E(w)} − λ{‖dw‖2 − ε2}
which by means of

E(w+ dw)− E(w) = (∇E(w))T dw

leads to maximizing

(∇E(w))T dw − λdwTΓdw
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An extremum with respect to the small vector dw is found if

∂

∂dw
{(∇E(w))T dw − λdwTΓdw} = 0

This implies
∇E(w)− 2λΓdw = 0

hence

dw =
1

2λ
Γ−1∇E(w)

and our gradient descent rule using the natural gradient consequently is

∆w = −ε∇̃E (w)

where

∇̃E(w) = Γ−1∇E(w)

dw ∝ Γ−1∇E(w)

and the natural gradient is taken as

dw = Γ−1∇E(w)

In the following we will consider a very simple example in order to show
how this method can be applied in order to make the robot include the
sensor values according to their reliability.

2. Application: One neuron several channels

Let us consider the case of one controller neuron with n sensoric channels.

2.1. The sensorimotor loop. The sensorimotor loop can be written
as

xi,t+1 = aiyt + ξj,t (2.1)

where x ∈ Rn, y ∈ R1 so that our usual sensorimotor dynamics xt+1 =
ψ (xt) + ξt specifies to

ψi (x) = aiy = aig(z) = aig(
n∑
p=1

cpxp +H)

The Jacobian L in this case is

Lij =
∂ψi
∂xj

= aicjg
′(z)

or
L = Rg′ (z)

where1

R = acT

From our general principle we have

ξ = Lv (2.2)

The Jacobian matrix L is not invertible, so the shift v is not uniquely iden-
tified. We may remove the ambiguity by making an assumption on the

1In the present Section, c ∈ R1 so that we use again a small letter.
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direction of v. Because of eq. 2.1 it is appropriate to put v proportional to
a so that we put

v = uâ

where â = a/ ‖a‖ (meaning that â is a unit vector in the direction of a), so
that

Lv = ug′acT â = ug′ ‖a‖ âcT â = ug′Râ (2.3)

where now

R =
n∑
p=1

apcp = aT c

.
Using this customized v in our error formula we get

E = vTv = u2

In order to find u we multiply the 2.2 by â so that

ξ · â = Rg′(z)u

hence

E = u2 =
(ξ · â)2
(Rg′(z))2

= αΛ−2

the gradient is obtained as

−∂E

∂cp
= −2u ∂u

∂cp
= 2αΛ−3

∂Λ

∂cp

= 2u2Λ−1
∂Λ

∂cp
or

−∂E

∂cp
= 2u2Λ−1(apg

′ +Rg′′xp) (2.4)

= µap(1− 2Ry2) (2.5)

where g′′ = −2gg′, xp = apy and µ = 2u2

R .
The parameter dynamics in the normal gradient descent scenario reads

∆ci = µap(1− 2Ry2)

which is stationary at 1 = 2Rg (z) and the fixed point relation is as before
z = Rg (z), see Chapter 4. It is appropriate to add a small damping term in
order to damp away remnants of the initial conditions which are not changed
by the parameter dynamics due to the ambiguity of the definition of v. Using
a penalty term as ‖c‖2 which is aimed at suppressing large values of c, the
time loop error now is

E = u2 + λ
∑

c2i (2.6)

We find
∆ci = µai(1− 2Ry2)− λci (2.7)

Considering this at the stationary state where ∆c = 0 we get our first
result

ci = kai (2.8)

where
k =

µ

λ
(1− 2Ry2) (2.9)
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Hence the contribution of the sensor i to the sensorimotor dynamics is pro-
portional to the response strength ai of the sensor to the actions y, see also
[8].

We conclude this paragraph with a discussion of the value of k. In the
present many channel case, the fixed point equation

z = Rg (z) (2.10)

is as in Chapter 4, with R = ka2 where k is considered unknown so far.
Using eqs. 2.8,2.10 in eq. 2.7, we have to consider eq. 2.10 together with

1− 2zg (z) =
λ

µ
k =

λ

µa2
R (2.11)

With λ = 0 we find the solution given already in Chapter 4. Let us call
that one z, k (where R = ka2 = 1.1911, z = 0.7717) and the one for finite λ
as z + δz and k + δk. From eq. 2.8 we find in lowest order

δz = − λ

2µ (g (z) + zg′ (z))
k =

λ

2µa2g (z) (1 +Rg′ (z))
R

Using this in z + δz = a2 (k + δk) g (z + δz) we find

δk =
1

a2g (z)

(
1−Rg′ (z)

)
δz =

λk

2µg2 (z) a2
(1−Rg′ (z))

(1 +Rg′ (z))

= 0.183
λk

2µx2

so that

δk = α
λ

µ
, δz = β

λ

µ

where α, β are of the order of 1 so that the dependence of the fixed point
on the value of λ/µ is smooth.

2.2. Natural gradient parameter dynamics. In order to use the
natural gradient we must specify the metrics of the Riemannian space first.

For the present purpose we use the metrics via the noise matrix D = ξξT as

γij = Dij = ξiξj (2.12)

In the following we will use the natural gradient descent to derive the learn-
ing rules of the parameters c for the case of one neuron and many channels.
Using the metrics given by eq. 2.12 we at first have to change the penalty
term in the time loop error which was defined as the length of the vector c,
cf. eq. 2.6. According to our new metrics in parameter space we put

E = u2 + cTDc

In general, this matrix will depend on the parameters itself since the latter
control the behavior and the model error ξ of the world model of course will
depend largely on the quality of the behavior. In the present approach this
is not the case, we are just going to sketch the consequences of using the
natural gradient descent.

The natural gradient in the present case reads

∇̃E = D−1∇E (2.13)
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which produces the parameter dynamics

∆c = εµ(1− 2Ry2)D−1a− λc (2.14)

With two channels this reads using the explicit form of D−1

(
∆c1
∆c2

)
=

µε

det(D)
(1− 2Ry2)

((
ξ22 −ξ1ξ2

−ξ1ξ2 ξ21

)(
a1
a2

)
− λ

(
c1
c2

))

(2.15)
The dynamics of eq. 2.14 is stationary if

c = kD−1a

where k was given above. this is our second result meaning that the c is
not proportional to a itself as in eq. 2.8 but instead to the vector D−1a.
The consequences of this new relation is seen most easily in the case of of
uncorrelated noise

Dij = δijξ
2
i

where we get immediately

ci =
k

ξ2i
ai

This is the main result showing that the strength of the coupling ci of channel
i is proportional to the response strength of the sensor i divided by the
strength of the noise in that channel. The quotient

ai

ξ2i

may be considered as a measure of the feasibility of the sensor so that the
control exerted by the neuron in channel i is proportional to this feasibility,
more noise channels being less contributing to the sensorimotor dynamics.
The theoretical results are well corroborated by the computer simulations,
see the Figs. 1 and 2.

3. An algorithm for updating the inverse noise matrix.

With respect to practical applications, the matrix D can be obtained
on-line by a moving average procedure according to

Dt+1 = ηξξT + (1− η)Dt

where Dt is the average noise matrix in time step t and η−1 defines the
width of the time window for the averaging. Moreover, it would of course
be helpful to have also an algorithm for the update of the inverse matrix
D−1. Otherwise the matrix Dt would have to be inverted in each time step
which his not feasible since the number of channels may be very high. In
practical applications, the sensor values for instance might be the pixels of
a camera. For this purpose we may use the Sherman-Morrison formula for
inverse matrix updates. The latter states that if we have an n × n matrix
A which is to be changed as

A→ A+ uvT
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Figure 1. Natural gradient dynamics for the case of one
neuron and two channels. The parameters are a1 = a2 and

(ξ21)
2 = 10(ξ22)

2. This graph shows that starting from c1 =
0.7, c2 = 0.5 the c values converge towards the expected
relation, i.e. the c of the channel with larger noise strength
is about 10 times smaller than that of smaller noise strength.

where u and v are n× 1 column vectors then the inverse of the new matrix
is given as

(
A+ uvT

)−1
= A−1 − A−1uvTA−1

1 + vTA−1u

Let us put A = (1 − η)Dt and uvT = ηξξT . So, if D−1 is known initially,
the update of D−1

t reads as

D−1
t+1 =

1

(1− η)

(
D−1
t +

η

(1− η)

D−1
t ξξTD−1

t

(1 + ( η
1−η )ξ

TD−1
t ξ)

)

(the denominator is a scalar). In this way we can get the metrics for our
natural gradient descent in an on-line learning process. This has been used
in the computer simulations and has proven a very reliable algorithm.
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Figure 2. This graph shows that the channel with largest
noise strength( c1) has the smallest value.The used learning
rate is 0.0002, damping term 0.1 and γ = 0.001. The initial
condtion is x1 = x2 = x3 = 0 , c1 = c2 = 1 and c3 = 0.5



CHAPTER 8

Summary and outlook

The present thesis is a theoretical contribution to a systematic approach
to the self-organization of behavior in autonomous robots. It is deeply rooted
in the dynamical system approach to robotics, cognitive science, and arti-
ficial intelligence and investigates in some detail the properties of such sys-
tems based on a general paradigm. The paradigm tries to give the robot
a maximum sensitivity to its sensor values together with a maximum pre-
dictability of future sensor values resulting from the actions taken by the
robot. Formally, this leads to a parameter dynamics for the neural network
controlling the robot which is based on the gradient descent on the so called
time loop error, see Sec. 3.3 of Chapter 3. The latter is formulated entirely
in terms of the dynamics of the dynamical system describing the robot in
its environment (state dynamics). Hence the parameters for the state dy-
namics are driven by the state dynamics itself and this is why we call them
self-referential dynamical systems.

The thesis studies such systems in some detail. The results obtained
may be summarized in the following way. A first result is obtained in a very
simple sensorimotor loop with delays. In such systems, under the closed
loop control paradigm used in the present thesis, one often encounters rapid
oscillations of the robot which may be strong enough to destroy the robot.
These oscillations have been shown to arise from the time delays and it was
demonstrated that by a simple smoothing procedure the problem can be
solved. The further chapters of the thesis are devoted to the study of the
self-referential systems. On a quite general basis, see Chapter 3, one may
argue that the self-referential system tries to maximize its exploration rate
in the dimensions of the state space where the model error is large. In this
way the robot is enabled to gather more information in the dimensions which
are not well covered by the world model, see Sec. 5.3 of Chapter 3. With a
good separation of the time scales for the parameter dynamics (learning) and
the state dynamics it was shown that the self-referential system generates
a fixed point flow of the state variables towards the bifurcation points with
occasional jumps to other fixed points, see Sec. 6 of Chapter 3. This is the
generalization of the well known situation in the one-dimensional case (with
learning of both the bias and the feed-back strength parameters) which was
demonstrated in earlier papers to lead to a limit cycle behavior. The thesis
adds to these well known results an example for the learning of the world
model as driven by the active exploration behavior of the robot in the sense
mentioned above, see Sec. 2.2 of Chapter 4.

The main body of results is obtained for the case of a two-dimensional
system, see Chapter 5. In the linear case it could be shown that the controller
matrix C converges for a large set of initial conditions to an SO (2) structure
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leading to a periodic or quasiperiodic state dynamics with frequency largely
depending on the initial condition of the C matrix. Nonlinearities are shown
to largely modify this picture. In order to get a systematics at first the case
of learning only the controller matrix C is considered. Several different
phenomena could be identified which are realized alternatively depending
on the initial conditions and the reaction of the environment. Noteworthy
are (i) the case of regular oscillations where a period-4 cycle was shown
to be particularly stable; (ii) the case of irregular oscillations with the non-
diagonal elements playing the role of a bias dynamics; and (iii) the switching
oscillator scenario where one neuron is oscillating and the other one keeps
itself at the fixed point, the role of the neurons interchanging after some
time. In the latter cases the frequency is seen to be regulated by both
the learning rate and the reactions of the environment (noise) so that the
behavior of the robot is strongly coupled to the behavior of the world.

The most interesting effects were found for the case that each neuron also
has a bias driven as well by the gradient dynamics on the time loop error.
The emerging bias dynamics can be considered as an additional internal
state dynamics for the controller which increases the complexity of possible
behaviors of the robot far beyond a simple reactive behavior. The most
prominent effect has been found in form of the so called frequency wandering,
which makes the robot to continuously sweep through its accessible periodic
behaviors. This is a clear example of its exploration capabilities.

In a practical application, the so called barrel robot, the frequency wan-
dering effect is also realized however in a different way dictated by the em-
bodiment of the agent which is seen to react on the parameter dynamics in
a definite way. The results show how the parameter dynamics driving the
internal state of the controller sensitively adapts to the specific properties
of the body it is controlling. On the phenomenological level one might say
that the robot is able to both accelerate and decelerate or that it actively
investigates its space of velocities. The sensitive dependence of the com-
bined state-parameter dynamics has also been made explicit by considering
the case of noise over the channels, see Sec. 5 of Chapter 5.

In the three dimensional case several of the effects found in two dimen-
sions could be shown to survive in a modified form. In particular, in the
case of no bias a theoretical and computer simulation study was carried out
showing the persistence of the regular oscillations with higher order period-
icity. When the bias dynamics is included, the frequency wandering effect is
also observed, however it does not involve all three neurons but instead real-
izes in subsystems of two neurons, with a switching between the subsystems
after some time. The effect is found to be rather stable, i.e. it emerges under
a broad range of initial conditions provided the noise is not too strong.

A modification of the general approach has been presented in Chapter 7
by using the so called natural gradient for generating the parameter dynam-
ics from the time loop error. The natural gradient as introduced by Amari
into learning theory gives the optimal direction for descending a function if
the metric of the space is Riemannian. By using the noise matrix D as the
metric tensor we could show that, under the closed loop control paradigm,
control is realized on the basis of sensor values weighted according to their
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feasibility. In the most simple case of uncorrelated noise, this measure is
given by the response strength of the sensor divided by the strength of the
noise. In more general cases the controls are given by the vector of response
strengths a multiplied by the matrix D−1. Moreover an algorithm was pro-
posed and tested in simulations for the on-line learning of this inverse noise
matrix.

The present thesis has revealed that the time loop error is a constructive
method for the self-organization of a robot behavior which is both explo-
rative and sensitive to the environment. Most of the investigations, however,
have been carried through under the assumption that the world (robot +
environment) is more or less trivial, i.e. we have proprioceptive sensors only
which report on the result of the actions plus some noise. This is reflected
in the linear expression xt+1 = Ayt + ξt of the sensorimotor dynamics with
ξ being a pure (and mostly small) random number. An exception has been
the barrel robot which is a physical object with large inertia effects and a
very complicated relation between motor and sensor values. Nevertheless a
strong parallel to the results with the idealized world could be established in
the presence of the frequency wandering effect. It would be very interesting
to repeat these investigations with different kinds of embodied agents.
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