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Abstract. Self-organization and the phenomenon of emergence play an
essential role in living systems and form a challenge to artificial life sys-
tems. This is not only because systems become more lifelike, but also
since self-organization may help in reducing the design efforts in creat-
ing complex behavior systems. The present paper studies self-exploration
based on a general approach to the self-organization of behavior, which
has been developed and tested in various examples in recent years. This is
a step towards autonomous early robot development. We consider agents
under the close sensorimotor coupling paradigm with a certain cogni-
tive ability realized by an internal forward model. Starting from tabula
rasa initial conditions we overcome the bootstrapping problem and show
emerging self-exploration. Apart from that, we analyze the effect of lim-
ited actions, which lead to deprivation of the world model. We show that
our paradigm explicitly avoids this by producing purposive actions in a
natural way. Examples are given using a simulated simple wheeled robot
and a spherical robot driven by shifting internal masses.

1 Introduction

Adaptation and survival in uncertain and ever changing environments are one
of the key challenges in natural and artificial beings. The field has seen many
impacts from life sciences, one of the directions being epigenetic and develop-
mental robotics [11] trying to mimic natural ontogenesis. Moreover, the role of
embodiment has become an important subject in the past decade under (i) the
practical aspect of reducing computational efforts for control by exploiting the
physical properties of the robot in its environment, see [12], [9], and (ii) the
more conceptual aspect that embodied sensorimotor coordination is vital for the
self-structuring of the sensor space necessary for categorization and higher level
cognition, see [15], [10].
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The approaches are very diversified and often oriented towards specific goals,
leading to nice results up to the humanoid level. Our work aims more towards an
approach from first principles. We consider agents under the close sensorimotor
coupling paradigm, controlled by a neural network. Moreover, the robot disposes
of a certain cognitive ability realized by an internal forward model (world model)
predicting future observations on the basis of present observations and controls.
Such models are speculated to play an important role for human motor control,
cf. [17] as an example.

In the engineering sense the world model is learned by trying random actions.
This is also assumed to take place in human development and is called motor
babbling. However this approach is infeasible in high dimensional systems. This
problem is called the curse of dimensionality in statistical learning theory and
was realized to be a serious problem in learning sensorimotor tasks by Bernstein
[1] long ago. Moreover, usually it is even not necessary to try all actions, but just
those that contribute most to the information gain of the model. Our approach
aims at the realization of self-exploration with emerging purposive actions in-
stead of motor babbling.

The concomitant learning of both, the controller and the model, faces among
others the cognitive bootstrapping problem. Starting at a “do nothing” and
“know nothing” initialization of the controller and the internal model, respec-
tively, the robot does not have any information on the structure and dynamics
of its body so that the world model has to learn this from scratch. However, in
order to learn effectively, the controls have to be informative or purposive so that
the world model is provided with the sensorimotor patterns necessary for its im-
provement. On the other hand, these actions require a certain knowledge of the
reactions of the body – information is acquired best by informed actions. This
bootstrapping situation in principle reappears on all stages of the developmental
process. We consider here a solution at a level, which is essentially based on the
feed-back of proprioceptive sensors, i.e. self-exploration of the physical properties
of the body. We understand this as early robot development, i.e. the first step
of a self-organized development towards ever increasing behavioral competencies
and understanding of the behavior of the body in its environment.

In recent years we have derived a systematic approach to the self-organization
of behavior which has proven its practical applicability in a number of examples,
see Refs. [4], [8] or the videos on [7]. This has been achieved not only for wheeled
robots in a cluttered environment, see the video [2] and others on our video
page, but also for high dimensional snake like robots, see the zoo videos on [7].
These creatures have no program (set of rules defining behavior), no aims, and
no purpose. Yet they deploy activities by itself which are rooted in their bodies
and related to the environment in which they “live”. We will discuss in the
present paper how this is related to the solution of the bootstrapping problem
by emerging self-exploration.

The paper is organized as follows. In Sec. 2 we give a brief introduction to our
general control paradigm. We demonstrate on a theoretical basis how purposive
actions, necessary for self-exploration, emerge in a natural way in Sec. 3. These
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theoretical findings are verified in the following section with two examples, a
wheeled robot and a spherical robot driven by internally shifting masses.

2 Controller Learning – Between Sensitivity and
Predictability

The learning of the controller is based on the papers [3], [5]. We give here only
the basic principles of our approach. We start from the information the robot
gets by way of its sensor values.

2.1 The Sensorimotor Dynamics

Let us consider a robot which produces in each instant t = 0, 1, 2, . . . of time the
vector of sensor values xt ∈ R

n. The controller is given by a function K : R
n →

R
m mapping sensor values x ∈ R

n to motor values y ∈ R
m

y = K (x)

all variables being at time t. In the example of a two-wheeled robot we have yt =
(yt1, yt2)

�, yti being the target wheel velocity of wheel i. In the cases considered
explicitly below, the controller is realized by a one layer neural network defined
by the pseudolinear expression (omitting the time index)

Ki (x) = g (zi) (1)

where g (z) = tanh (z) and

zi =
∑

j

Cijxj + hi (2)

This seems to be overly trivial concerning the set of behaviors which are
observed in the experiments. Note, however, that in our case the behaviors are
generated essentially also by an interplay of neuronal and synaptic dynamics
(see Eq. 11 below), which makes the system highly nontrivial.

Our robot is equipped with a world model which is a function F : R
n ×R

m →
R

n predicting the current sensor values in terms of the earlier sensor and motor
values, i.e.

xt = F (xt−1, yt−1) + ξt (3)

where ξ is the modeling error. In practical applications, F may be represented
by a neural network with parameter vector w, which might be learnt by standard
back propagation. The world model realizes the cognitive abilities of the robot.
Cognition is understood on a very low level, meaning essentially the ability to
predict the future consequences of the actions undertaken by the robot. This is
actually what the world model does.

Introducing Eq. 1 into the equation for the world model, we get the dynamical
system representing the dynamics of the SM loop as

xt = ψ (xt−1) + ξt (4)
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The dynamics for the parameters of the controller are derived from the following
two objectives. We aim on the one hand, at a maximum sensitivity of the effects
of the controls to the current sensor values. This induces a self-amplification of
changes in the sensor values and thus is the source of activity. On the other hand,
we require a maximum predictability of these effects, which are represented by
future sensor values. This keeps the behaviour in “harmony” with the physics of
the body and the environment.

The first objective is realized by requiring a high sensitivity of the map ψ of
the sensorimotor loop towards small changes in its inputs. In more detail, we
require that ψ realizes the new vector of sensor values xt by applying a small
shift to the inputs, i.e. we put

xt = ψ (xt−1 + vt−1) (5)

or
ψ (x) + ξ = ψ (x + v) (6)

where v is the input shift. This equation has a unique solution if ψ is invertible.
If not, convenient approximations must be used. This question has to be solved
in order to find a stable algorithm but we are not going into these details in the
present paper.

At each time step we can find the value of v and define the error (omitting
the time index)

E = ‖v‖2 = vT v (7)

where‖. . .‖ means the Euclidean norm. The quantity x̂t−1 = xt−1 + vt−1 is the
vector of previous sensor values as reconstructed from the current ones. We may
therefore call E the reconstruction error. Moreover, from the point of view of
time step t − 1 the vector x̂t−1 is obtained by going one step forward in time
by the true dynamics and then back to time t − 1 by the inverse world model
dynamics given by ψ. This is why we also call E the time loop error.

In order to get a more explicit expression we use Taylor expansion, which in
leading order yields

ξ = L (x) v

where L is the Jacobian matrix defined as

Lij (x) =
∂

∂xj
ψi (x)

which is a direct measure of the stability of the dynamical system, see below for
a discussion. If L exists we immediately find

v = L−1ξ

so that
E =

∥∥L−1ξ
∥∥2

= ξT
(
LLT

)−1
ξ (8)

which is the error function used in the algorithm for adapting C, see Eq. 9 below.
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The Gradient Flow of the Parameters. The adaptation of the parameters
of the controller can be realized by gradient descending the error function E as
usual

ΔC = −ε
∂

∂C
E (9)

The resutling dynamics of the parameters can, at a formal level, be argued
to produce the desired properties of the system. In fact, since LLT is symmetric
we may decompose it as

LLT =
n∑

i=1

λiPi

where Pi = nin
T
i is the projector on the eigenvector ni with λi the corresponding

eigenvalue. Then

E =
∑

i

λ−2
i ξ2

i

with ξi = nT
i ξ being the projection of the model error into the subspace spanned

by ni, both λi and Pi depending on the parameters C of the controller in an
intricate way. This expression is only valid if the n × n matrix Q = LLT is of
full rank, so that none of the λi is equal to zero. However, we also note that, if
we start with an L of full rank, the parameter dynamics will drive Q away from
impending singularities due to the divergence of E for any λi → 0.

In more detail, writing the gradient rule as

ε−1ΔC =
n∑

i=1

(
ξ2
i

λi

∂λi

∂C
− ξi

∂ξi

∂C

)
λ−2

i (10)

we see that the gradient flow is driven by two objectives. The first term on the
right hand side obviously tends to increase each of the eigenvalues λi and hence
the instability in the corresponding subspace. The interesting point is in the
prefactors ξ2

i /λi which mean that the update is strong where λi is small (high
stability) and/or ξ2

i is large (high modeling error component in this subspace).
This can be interpreted as the tendency of the parameter dynamics to produce
in all directions the same degree of instability with subspaces of higher modeling
error being destabilized even more strongly. Destability corresponds to a higher
rate of noise amplification, such that one may say that those subspaces are
explored more intensively, which are less well represented by the model. This is
the effect which is relevant for the present paper and will be discussed by way
of example in Sec. 3.2 below.

The second term in Eq. 10, the strength of which is modulated by ξi, es-
sentially counteracts the overshooting destabilization of large error subspaces
caused by the first term. It is to be noted, that the error components ξi not
only depend on the quality of the model, but in an essential way on the behav-
ior of the robot. Hence, both the ξi and eigenvalues λi change with changing
parameters.
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Altogether we may say, that our parameter dynamics generates an explorative
behavior of the robot (by the first term), which however is related to the envi-
ronmental reactions by the second term. This has been demonstrated in many
applications realized in recent years, see for instance [5] and our video page.

Expicit Learning Rule. In the present paper we consider the one-layer neural
network controller given by Eq. 1 so that the Jacobian is

Lij =
∑

k

Aikg′ (zk)Ckj

where

Aik =
∂

∂xk
Fi (x, y)

and F is learnt concomitantly with the controller by supervised learning on the
basis of the new sensor values. We use g (z) = tanh(z) where g′′ = −2gg′ so that
we get the explicit expressions (omitting the time indices everywhere)

ε−1ΔCij = ζivj − 2ζiρiyixj (11)

ε−1Δhi = −2ζiρiyi

where v = L−1ξ, μ = A�Q−1ξ, ζi = g′iμi, and ρ = Cv. The inversion of the
matrix Q = LL� is done by standard techniques, and has proven in many
applications to be feasible and not time critical with up to 20 independent degrees
of freedom.

Note that the parameter ε is chosen such that the parameters change at
about the same time scale as the behavior. The interplay between synaptic and
state dynamics of the controller induces a high dynamical complexity of the
sensorimotor loop. The resulting robot behaviors are of a much larger complexity
than the pseudolinear expression with fixed parameters might ever realize.

3 Model Learning – Problems and Challenges

Internal models are one of the prerequisites for a robot to become a cognitive
system. In the case of human motor systems the role of internal models has
in particular been emphasized by the work of Wolpert [18], [16]. In the present
paper we are concerned with forward models as given by Eq. 3 which are learnt in
a supervised way on a training set of sensorimotor patterns (xt+1, yt). However,
in order to learn the relevant information about the world, the training instances
must be guaranteed to sufficiently sample not only the sensor space, but also
the action space. In practice it is complicated to ensure this sampling property.
In case of on-line learning there is always only a part of the state action space
covered in a restricted interval of time. This fact actually is widely recognized
but we will demonstrate it in an extremely simple situations in order to work
out explicitly the bootstrapping problem involved.
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3.1 The Deprivation Effect

Let us consider a very simple example of a sensorimotor loop given by a robot
with two wheels. The only sensor values are given by the current velocities which
can be measured by a wheel counter, i.e. we have only proprioceptive sensors in
this case. Assuming that the reactions of the wheels are largely independent of
each other, we expect the model to be given as xt+1 = Ayt +ξ where x ∈ R

2 and
y ∈ R

2 are the measured and target wheel velocities, respectively, and ξ is the
modeling error. In the case given A = αE is essentially the unit matrix. This is
what one expects to be learnt by for instance gradient descending the error E =
ξ�ξ with learning rule

ΔAt = εAξty
�
t−1 − βAt (12)

where ξt ∈ Rn, yt−1 ∈ Rm, and
(
ξy�)

ij
= ξiyj . The small damping term −βA

has to be introduced in order to damp away the influence of the initial conditions.
The scaling factor α is a hardware constant.

However, convergence to the correct solution A = αE is guaranteed only if the
training instances (xt, yt−1) cover the full state-action space. Now let us assume
that the behavior is restricted to a certain subspace of the action space. Under
our closed loop control paradigm, behavior is parameterized by the matrix C of
the controller. A restricted behavior is produced by assuming the C matrix of
the controller as

C = γpp� (13)

where p is a normalized vector, pp� is the projector onto p, and γ a constant
with γ > 0 and γα > 1. The sensorimotor dynamics1

xt = Ag (Cxt−1 + h) + ξt

converges towards a fixed point. The controller will produce the vector y =
g (sp + h) defining the wheel velocities, where s is obtained from the solution of
the fixed point equation. In particular if (h = 0 for the moment)

p =
1√
2

(
1
1

)
(14)

the robot will move either straight forward or backward if s > 0 or s < 0,
respectively. Choosing instead p = (1, − 1)T

/
√

2 the robot will rotate on site.
The behavior can still be further modified by changing h.

The point now is, that instead of converging towards the unit matrix, A is
learnt as

A = αpp� (15)

so that A is essentially the projector on the subspace given by the degenerate
controller. This is a correct solution in the space covered by yt which of course
is completely wrong in the complementary subspace of the motions of the robot.

1 Consider g (z) as a vector function, i.e. gi (z) = g (zi).
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This effect makes the learning unstable if the controller changes the motor
vector on a slow time scale since the matrix A will follow this change. Of course
this result hinges on the time scales. In fact the problem will not arise so strongly
if the time scales for the learning are much larger than the intervals of persistent
directions of the robot.

3.2 The Bootstrapping Scenario

As explained in the introduction, the aim of our approach is the concomitant
learning of the controller and the model from scratch. The toy example given
above has demonstrated that, if the actions y ∈ Rm (with m = 2 in the exam-
ple above) are restricted to a certain subspace, the model will degenerate to a
projector onto that subspace with the effect that it will be completely wrong in
the orthogonal subspace. The challenge is that the controller needs to “feel” this
deprivation of the world model and to issue motor commands which provide the
world model with the state-action pairs (xt, yt−1) necessary for learning in the
orthogonal subspace neglected so far.

This is exactly what happens in our approach for the learning of the controller.
We will now demonstrate this theoretically in terms of the above model with
degenerate C = γpp�. With A from Eq. 15 we get in the linear (low z) case

L = γαpp�

so that the Jacobian matrix is singular, hence E has a singularity, and the
degenerate C is seen to be an instable fixed point of the gradient dynamics.
Without loss of generality we may use the specific form Eq. 14 for p. Now let
us assume that C has a small deviation δC which corresponds to the projector
into the orthogonal subspace, i.e. we put

C = γppT + μp⊥pT
⊥

where p⊥ is orthogonal to p, i.e. p⊥pT
⊥ is the projector onto the orthognal com-

plement of p, and μ is arbitrarily small. With a noisy input or with a random
motor event (motor babbling) the action may be

y = sp + σp⊥ (16)

where |σ| is small. We are now going to show now that this small fluctuation
leads to a strong amplification of the p⊥pT

⊥ component in C.
If the robot is executing this action, we get a model error (we assume the p

subspace is already learnt correctly and neglect other noisy events)

ξ = ασp⊥ (17)

since A is still the degenerate matrix A = αppT . The learning step for A produces

ΔA = εξyT = εασs

(
1 1

−1 −1

)
+ εασ2ppT

⊥
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(we drop the damping term because it only contributes to the degenerate part
of A). In the small z case considered we have now L = (A + ΔA)C. In leading
order (small μ and εσ) we find with simple matrix algebra that

(
LLT

)−1
=

1
4α2ε2σ4μ2 p⊥pT

⊥

which is the projector on just that subspace which is not well covered by the
model so far, i.e. in this order the learning so to say concentrates fully onto the
subspace not “understood” by the model. Using Eq. 17 the error is obtained as

E =
1

2σ2ε2μ2 (18)

This shows that the learning will rapidly increase the strength μ of that part
of C which projects into the orthogonal subspace. However, in this way also the
contribution of the orthogonal actions is increasing so that the constant μ in Eq.
3.2 is increasing as long as the model is still wrong. We may interprete this by
saying that the controller tries more and more actions which force the model to
learn also the behavior in the orthogonal subspace. This is a kind of purposive
behavior, the purpose being to feed the model with the necessary input-output
pairs for complete learning. The process has to be started by some fluctuation
in the output of the controller which may be called motor babbling.

The difference of this behavior to the usual strategy of issuing random mo-
tor commands consists in the fact that the novel motor commands are directed
into the unknown regions of the state-action space. This of course is of rele-
vance for high dimensional systems where random commands face the curse of
dimensionality. This has been clearly demonstrated in our experiments with high
dimensional (up to 20 independent motors) systems, see our videos of the snake
robots, where collective modes are excited by this bootstrapping phenomenon.
The background behind the high dimensional scenario is that the paradigm en-
sues spontaneous symmetry breaking and creating low dimensional searching
modes in high dimensional search spaces, which will be demonstrated in a later
paper.

4 Experiments

In the sections before we have studied deprivation of the world model and we
have seen how purposive actions can efficiently eliminate this effect. In order
to illustrate this in practice, we will consider different experiments. First, we
consider the rather artificial setting as described in section 3.1 theoretically
with a simulated two-wheeled robot. Second, the self-explorative character of
you controlling paradigm is analyed using the same robot. Third, a simulated
spherical robot is considered on a flat surface to show self-explorative behavior
at a more complex system. Finally the spherical robot is considered in a basin
like environment, where deprivation occurs naturally.
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4.1 Experiment I – Two-Wheeled Robot: Deprivation and
Bootstrapping

The idea of this experiment is to show, that first in the case of limited motor
commands deprivation of the world model occurs, and second that our controller
effectively produces purposive actions. We use the physics engine ODE (open
dynamic engine [14]) for the computer simulation experiments. A simulated two-
wheeled robot is controlled with motor commands within a subspace of the action
space. Motor commands y are understood as wheel velocities and the sensors
values x are the read back wheel velocities obtained from the wheel counters.
Please recall the controller function K(x) = y = tanh(Cx + h) (Eq. 2). As
decribed in section 3.1 the controller matrix is degenerated as Cij = 0.6 + λuij ,
where uij are random numbers and 0 < λ � 1. We modulate h such that the
robot drives backward and forward periodically.

As expected, we observe a degeneration of the world model, see Figure 1.
After the model learning is basically converged, the learning of the controller
according to Eq. 11 was switched on (at time 4550). After a short break down of
the activity one observes the emergence of motor commands which live mainly
in the orthogonal subspace. This means rotational behavior of the robot. Later
on both, straight and rotational modes, are equally visited so that the model
gets the necessary information. A is converging towards the unit matrix as it
should be. The behavior and the parameter dynamics are displayed in Figure 1.

4.2 Experiment II – Two-Wheeled Robot: Frequency Wandering

Besides the effects discussed so far there is more to the self-exploration properties
of our approach. In particular the fact that the error E = v�v is invariant
to rotations of v introduces a certain invariance of the state dynamics against
frequency changes (in a linear approximation). This leads to the effect that the
robot self-regulates the frequencies of its motor values.

In the experiments we use the simulated two-wheeled robot as in the previous
section. Most of the time the robot moves by sequences of straight and rotational
motion primitives. This corresponds to the exploration of the physical space and
is what one would call an explorative behavior in the usual sense. However, oc-
casionally the controller gradually increases the frequency of the dynamics in
the sensorimotor loop so that rather complex trajectories emerge in the physical
space. With even higher frequencies we observe a jiggling of the body where
physical effects due to inertia, swing, and even gyro effects come into play. We
may say that this is the phase of the self-exploration of these physical properties
of the body. However, the simple world model does not understand the high fre-
quency modes very well, so that they are left after some time. The robot returns
to its “normal” behavior with a succession of rotational and straightforward
driving modes. This play repeats more or less forever with a strong influence of
the noise. In Figure 2 the short-time fourier transform of the motor values are
displayed, which reflect the frequency in the sensorimotor dynamics.
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Fig. 1. Model deprivation and recovery in case of a two-wheeled robot. From time
0 – 4550 the robot was controlled by fixed C and modulated h (oscillating for-
ward/backward), and after time 4550 the learning of the controller is enabled. The
time scale is 1/50 sec, i.e. the whole run is 160 sec long. Left: Model matrix A. Degen-
erates until controller learning is enabled. After that it learns towards a unit matrix.
Upper right: Motor commands yi and steering y0 − y1. One can clearly see that the
controller performs rotational actions in a dedicated manner after the activation of
the learning (> 5000). Later on the motion consists of straight and rotational modes
leading to the full deployment of the world model. Lower right: Controller matrix C.

This scenario actually reminds one of the fact that the controller with its
learning dynamics does not know about the physical space so that everything it
does is the exploration of the properties of the body and the exploration of the
space is only in the eye of the beholder. A relation to the space would emerge
if we include sensors informing about positions in space. The emergence of the
concept of space will be the subject of a later paper.

4.3 Experiment III – Spherical Robot: Emerging Self-exploration
on Flat Surface

The wheeled robot is a rather simple example of a sensorimotor loop. In order to
show the emergence of sensorimotor coordination by self-exploration we demon-
strate the above phenomena with a more complicated robotic object. The object
of study is a simulated spherical robot see Figure 3, inspired by Julius Popp [13].

The motor commands y are the nominal positions of the masses along the axes.
The sensor values are in this case the components of the vector of the z-axis of
the robot in the world coordinate system. In this way, the controller has only very
restricted information about the physical state of the sphere. Nevertheless, our
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Fig. 2. Power spectra of the motor values (speeds) over time. Each column is the lower
frequency part of the discrete Fourier transform of a 2 seconds time window of the
motor values (wheel velocities). Subsequent lines are overlapping, so that the time
scale is in units of 0.5 seconds. Dark pixels correspond to low energy and bright to
high energy in the corresponding frequency band. High energy in a certain frequency
band means that changes between forward and backward driving occur at about that
frequency. Note that at times 120 and 200 a jump in the frequency occurs meaning that
the robot suddenly changes to a highly complex motion pattern which then gradually
decays towards the mentioned low frequency regime.

Heavy Masses

Axis (Sliders)

Fig. 3. Simulated spherical robot used in the experiment. Left: Sketch of a spherical
robot. Inside the robot there are three orthogonal axes equipped with sliders. To each
slider a heavy mass is attached which can be shifted along the axis. There is no collision
or interaction of the masses at the intersection point of the axes. Upper right: Picture
of a spherical robot on the ground. Lower right: Picture of a spherical robot in a basin.

learning algorithm manages to produce highly coordinated sensorimotor patterns
corresponding to different rolling modes in the course of time.

Let us consider the case of the sphere on a flat surface, see the video [6]. In the
beginning the controller and world model is initialized in the “do nothing” and
“know nothing” situation (C and A are small random matrices). The parameter
dynamics given by Eq. 11 drives C until noise amplification sets in and the
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inner masses start moving so that the world model also starts learning. After
some time the sphere starts to roll slowly. Different movements are probed and
later a nice and constant rolling mode emerges. Such periods stay for quite a
long period of time. What happens in that time is that the world model gets
restricted information and the deprivation sets in which leads to the sudden
appearance of new controller actions which lead to a kind of explorative periods
followed by a new stable rolling period about a different axis.

Besides of the rolling mode we also observe a kind of jumping mode and
rolling modes with all three axes involved. These behaviors demonstrate the
self-exploration of the body and show how our algorithm manages to close the
sensorimotor loop in order to excite stable behavioral modes adequate to the
physical properties of the body.

This effect is also demonstrated with a different sensor set. In this experiment
we equipped the spherical robot with six infra-red sensors, which are installed
in each point of intersection of the axes with the surface of the sphere with the
direction along the axis and range of about two diameters of the sphere. The
six sensors values are fed directly to the controller. No other sensors are in use.
The sensor characteristic was chosen nonlinear as x = sα, where s is the primary
sensor value (distance) and α = 1.5. The effect is that the sensor characteristic
is a smoother function of the angular position of the robot. Still the sensor
information is extremely unreliable and related to the position of the sphere
in a very complicated way. Nevertheless, starting with the “do nothing” and
“know nothing” initialization, we observe many different rolling modes which
are visited in the course of time. In Figure 4 the power spectra of the sensor
values over time are displayed. High frequency means here high velocity. We
observed different behavioral modes. For example rolling with different velocities
around one of the slider axis or also the tumbling mode involving all three
axis.
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Fig. 4. Power spectra of the infra-red sensor values of the spherical robot on flat ground
over time based on 10 s time windows. The bright pixels indicate that there is a
dominating frequency of the sensor values which means that the robot is in a rolling
mode, the rolling velocity being roughly proportional to the frequency. Periods of stable
rolling modes of different velocities are seen to sometimes change rapidly into a resting
mode (frequency zero) or to other velocities.
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4.4 Experiment IV – Spherical Robot: Deprivation in a Basin

An interesting effect is produced if we put the sphere into a circular basin.
We use as sensors the projections of the z-axis of the body coordinate system
on the z-axis of the world coordinates. The motor commands are the nominal
position of the mass points on the inner axis. In Fig. 5 the behavior of the
robot in a basin is shown using the power spectra of the sensor values and the
determinant of the world model. The initial phase is of the same nature as on
the flat surface, i.e. from time 0 – 80 one can see self-explorational modes, where
different frequencies are probed. Then a stable rotational mode emerged (time 80
– 120), which is the circulation in the basin at a constant height. The circulation
mode is manifest in the power spectrum by the low frequency excitation, the
high frequency excitations being the motions of the axes of the robot due to the
rolling motion.

The circulation mode is a behavior which is not so easily realized with the
internally shifting masses. Contrary to the rolling on the flat surface the cir-
culation in the basin permanently changes the direction of the axes and hence
of the sensor vector. Nevertheless, the controller finds a strategy, such that the
circulation mode is stable over many laps. Interestingly this stable sensorimotor
pattern is realized by a trajectory which directly reflects the specific geometry
of the world. In a certain sense one might say that the robot by its behavior
recognizes this geometry.
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Fig. 5. Behavior of a spherical robot in a basin. (a): Determinant of the model matrix
A, (b – d): Power spectra of the sensor values (x, y, z) over time. In the time intervals
80 – 110 and 140 – 170 there are components of stable low frequency in sensor 1 (x)
and 2 (y), which correspond to the circulation in the basin at constant height. The
higher frequencies reflect the rolling of the sphere as in the flat surface case. One can
see that the value of the determinant of A decreases while the robot stays in one mode
of behavior (80 – 110, 140 – 170). This is an indication for the deprivation of the model
arising from the restriction to a specific mode of behavior. Once the deprivation reaches
a certain measure the bootstrapping of new actions sets in which leads to the recovery
of the model (increasing determinant).
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The behavior in the basin also shows that staying in a stable mode for a longer
time leads in general to a deprivation of the world model. This is seen from the
time plot of detA, which is taken as a crude measure for the degeneracy. In
Fig. 5 the deprivation can be seen at the behavior of detA. It is seen to be
indeed decreasing until it reaches nearly 0 at time 115, which means A is closed
to a singularity. An explorational period follows, which effectively explores the
orthogonal subspace, and the determinant of A is seen to increase rapidly. The
same starts again at time 140 and so forth.

5 Conclusions and Outlook

The results presented in the present paper can be considered as a step towards
autonomous early robot development, meaning the scenario where an unbiased
robot might learn the essential sensorimotor coordination by self-exploration.
The important point of our approach is, that it is completely domain invariant,
so that the emerging behaviors are dictated by the physical properties of the
body and the environment. This has a direct bearing for embodied AI in the
sense, that our controller learns to excite certain physical modes of the body,
which are qualified by the fact that they can be understood by the world model
in easy terms. Hence, we may understand these modes as behavioral primitives
which may be used in more complex behavioral architectures.

We have given a theoretical approach to the deprivation problem which arises
in the interplay between the world model and the controller. The system does
not have any information on the structure and dynamics of the body, so that
the world model has to learn this from scratch. This involves the so called boot-
strapping problem, meaning that on the one hand the controls have to be such,
that the world model is provided with the necessary information. On the other
hand, these actions require a certain knowledge of the reactions of the body
– information is acquired best by informed actions. The concerted manner by
which both the controller and the world model evolve during the emergence of
the behavioral modes seems to be a good example of this process.

We consider our approach as a novel contribution to the self-organization of
complex robotic systems. At the present step of our development the behaviors,
although related to the specific bodies and environments, are without goal. As a
next step we will realize a so called behavior based reinforcement learning. When
watching the behaving system one often observes behavioral sequences which
might be helpful in reaching a specific goal. The idea is to endorse these with
reinforcements in order to incrementally shape the system into a goal oriented
behavior.
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