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Rocking Stamper and Jumping Snakes from a 

Dynamical Systems Approach to Artificial Life

Ralf Der1, Frank Hesse1, Georg Martius2

1University of Leipzig, Germany
2University of Leipzig, Germany

Dynamical systems offer intriguing possibilities as a substrate for the generation of behavior because

of their rich behavioral complexity. However this complexity together with the largely covert relation

between the parameters and the behavior of the agent is also the main hindrance in the goal oriented
design of a behavior system. This paper presents a general approach to the self-regulation of dynam-

ical systems so that the design problem is circumvented. We consider the controller (a neural net-

work) as the mediator for changes in the sensor values over time and define a dynamics for the
parameters of the controller by maximizing the dynamical complexity of the sensorimotor loop under

the condition that the consequences of the actions taken are still predictable. This very general princi-

ple is given a concrete mathematical formulation and is implemented in an extremely robust and ver-
satile algorithm for the parameter dynamics of the controller. We consider two different applications, a

mechanical device called the rocking stamper and the ODE simulations of a “snake” with five degrees

of freedom. In these and many other examples studied we observed various behavior modes of high
dynamical complexity.

Keywords autonomous robots · self-organization · homeostasis · dynamical systems · learning 

1 Introduction

Dynamical systems form a powerful tool for both the
analysis and the realization of the behavior of autono-
mous robots. The increased interest in using dynami-
cal system theory for the analysis of the robot in its
environment may be dated back to the seminal paper
by Randall Beer (Beer, 1995). At about the same time
the book by Port and van Gelder (1995) initiated a
broad interest in the role of dynamical systems for
understanding life and cognition. There are numerous

applications of this approach so far. In particular,
the dynamical system theory has been used to under-
stand the functionality of evolved networks for robot
control (Nolfi & Floreano, 2000; Hülse & Pasemann
2002).

Apart from providing analytical tools, dynamical
systems offer intriguing possibilities as a substrate for
the generation of behavior. Let us consider a robot
which is controlled by a neural network, say, trans-
forming sensor values into motor commands. When
using a recurrent network this transformation can be
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rather complex and reaches far beyond a simple reac-
tive paradigm. This has been considered by several
authors under varying contexts and with varying suc-
cess. An elaborate behavior based design system has
been developed in the context of dual dynamics. The
system has a layered structure of behavioral subsys-
tems realized by ordinary differential equations, each
layer having its own time constant. Communication
between the subsystems is realized by specific interac-
tion and “bifurcation-inducing” mechanisms which
have to be designed by hand (Bredenfeld, Jaeger, &
Christaller, 2001). However, applications so far are
scarce. Of particular interest is the dynamical system
paradigm for walking machines where neural oscilla-
tors are used to generate the different gaits, see for
instance Schöner, Dose, and Engels (1995), Steinhage
(1997) and Hock, Schöner, and Giese (2003).

The authors quoted have mainly tried to design
dynamical systems so that they realize prescribed tasks,
the smooth navigation through a cluttered environ-
ment being a prominent example. The main problem
with this approach, however, is in the design of the
dynamical systems in view of the largely covert rela-
tion between parameters and behavior of the robot.

The main objective of our work is in fostering the
self-organization of such systems under a true emer-
gentist paradigm. Central is the aim to find mecha-
nisms of self-regulation for the parameters so that in
the rich reservoir of possible behaviors a working regime
is stabilized which ensures the viability of the agent.
Under this paradigm the aim is not the realization of a
specific task given from outside but the emergence of
organized motions.

Taking emergence at its roots means in our case
the formulation of the objective for the robot on a very
general not domain related level. In the present paper
we develop a dynamics for the parameters of the con-
troller which is essentially driven by the requirement
that the dynamical complexity of the sensorimotor
loop is to increase moderated by the requirement that
the consequences of the actions taken are still pre-
dictable. It is the message of the present paper that
this very general statement can be given a concrete
mathematical formulation and that the emerging beha-
viors display a very high degree of dynamical com-
plexity.

In concluding this introduction we will give a few
remarks on related work. Our general aim has some
roots in the concept of homeostasis, as introduced by

Cannon (1939) and later Ashby (1954), as a general
principle explaining the functionality of complex self-
organizing biological systems. Homeostasis has recently
received new attention in neurosciences. In particular
a series of papers by Turrigiano and others, e.g. Turri-
giano and Nelson (2004), have considered the role of
various homeostatic mechanisms serving the purpose
of counterbalancing the destabilizing effect of Hebbian
learning.

There are a few attempts to introduce homeostatic
mechanisms in robotics, e.g. Di Paolo (2003) and Wil-
liams (2004). However, while obviously helpful in sta-
bilizing systems the principle of homeostasis seems of
limited use for the construction of behavior systems.
In fact the aim of such a system is not stasis but a
common kinetic regime shared by the constituents of the
system in order to produce the behavior in the world.
We introduced homeokinesis (Der & Liebscher, 2002;
Der, 2005a) as the dynamical pendant of homeostasis
and the principle formulated in Section 2 is based on
this paradigm.

The behaviors emerging from such general princi-
ples are contingent. This means that they depend strongly
on the specific initial and environmental conditions and
on the specific physics of the robot. In this way our
work is also a contribution to the fostering and further
understanding of the role of embodiment in the crea-
tion of artificial beings; see Pfeifer and Scheier (1999)
for an overview. The focusing on behavior as arising
from an entirely internal perspective is also an objective
of the constructivistic approach (Glasersfeld, 1995) and
of autopoiesis (Maturana & Varela, 1979), which under-
lines the internal perspective of the agent. Our contri-
bution to these developments is to provide a concrete,
mathematically grounded approach for the realization
of these ideas in real robots.

2 Principles of Self-regulation

Based on the paper by Der, Hesse, and Liebscher (2005)
we give here the basic principles of our approach. Basic
to our approach is the dynamics of the sensor values.
Let us consider a robot which produces in each instant
t = 0, 1, 2, … of time the vector of sensor values xt 
Rn. By way of example we may consider a wheel
driven robot where

x = (vl, vr, IR1, …, IRn – 2)
T (1)

∈
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where vl and vr are the wheel velocities of the left and
right wheel, respectively, as measured by the wheel
counters and IRi is the value of the infrared sensor i
with 0 IRi 1. We use closed loop control, i.e. the
controller is given by a function K : Rn Rm map-
ping sensor values x Rn to motor values y Rm,

y = K(x)

with all variables being at time t. In the example we
have y = (y1, y2)

T, yi being the control (target velocity)
of wheel i. The controller may or may not depend on
internal states realizing a proactive or a purely reac-
tive behavior, respectively.

Our controller is to be adaptive, i.e. it depends on
a set of parameters C RP. In the cases considered
explicitly below the controller is given by the pseudo-
linear expression

Ki(x) = g(zi) (2)

where g(z) = tanh(z) and

zi = Cij xj + Hi (3)

This seems to be overly trivial concerning the set of
behaviors which are to be realized. Note however that
in our case the behaviors are generated essentially also
by an interplay of neuronal and synaptic dynamics
which makes the system highly nontrivial.

2.1 World Model and Sensorimotor 
Dynamics

We assume that our robot has a minimum ability for
cognition. This is realized by a world model F : Rn ×
Rm Rn mapping the actions y and old sensor values
x to the new sensor values, i.e.

xt + 1 = F(xt, yt) + ξt (4)

where ξt is the model error. The model F can be
learned by the robot using any learning algorithm of
supervised learning. Let the model be a parameterized
function (neural net) with parameters a RM. The
parameters a can be adapted by gradient descending
the error function based on ξ. The structure of the
model and the learning procedure define the passive
cognitive abilities of the robot.

With these notions we may write the dynamics of
the sensorimotor loop in the closed form

xt + 1 = ψ(xt) + ξt (5)

where ψ(x) = F(x, K((x)). The function ψ can be visu-
alized as a time series predictor for the time series of
the sensor values xt with the controller being known.

In the case considered below we have x, y Rn

and we assume that the response of the sensors is linearly
related to the motor commands, i.e. we write (drop-
ping the time index at the matrix A here and in the fol-
lowing)

xt + 1 = Ayt + ξt (6)

where A is a matrix and ξ the modelling error, so that
ψ(x) = AK(x). The model can be learned by, for exam-
ple, the delta rule. Again, this model seems to be over-
simplified. However, model learning will be seen to
be very fast so that different world situations are mod-
eled by relearning.

2.2 The Paradigm of Controlled Sensitivity

As discussed in more detail in Der et al. (2005) the
behavior is defined by formulating a parameter dynam-
ics for the controller so that a self-regulating system is
obtained. The parameter dynamics is essentially driven
by two requirements: that the dynamical complexity of
the sensorimotor loop is to increase; and that the con-
sequences of the actions taken are still predictable. The
dynamical complexity is directly related to the sensi-
tivity of the sensorimotor dynamics to changes in the
sensor values. We claim that one can combine the two
above requirements by introducing virtual sensor val-
ues  defined by minimizing the objective function

(7)

with a conveniently defined norm1. In principle  must
be found anew in each time step. Obviously the shift v =

 – x is small if both ξ (which measures the predicta-
bility) is small and the function ψ is sensitive to its
arguments. Hence the two aims of getting a robot with
both highly sensitive reactions and predictability of
behavior amounts to the requirement that the shift nec-
essary to produce the new sensor values is as small as
possible. Consequently we may define

≤ ≤
→

∈ ∈

∈

j
∑

→

∈

∈

x̂t

F x̂t( ) xt 1+ ψ x̂t( )–=

x̂t

x̂
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(8)

where (dropping the time index) v2 = vTv as our objec-
tive function for the behavior of the robot. Using gra-
dient descent the parameter dynamics is

(9)

Note that the parameter dynamics Equation (9) is
updated in each time step so that in practical applica-
tions the parameters may change on the behavioral
time scale. This means that the parameter dynamics is
constitutive for the behavior of the robot.

2.3 Explicit Expressions

The above equations define our approach in principle.
However, in order to better understand the nature of
the parameter dynamics we study it in the approxima-
tion of small v. If v is small we may use Taylor expan-
sion to write

ψ(x + v)= ψ(x) + L(x)v (10)

where L is the Jacobian matrix of the sensorimotor
loop defined as

Lij = ψi(x)

Using Equation (10) in Equation (7) we find2

v = L–1(x)ξ

and obtaining v means now we “only” need to find the
(pseudo-) inverse of the matrix L.

Introducing the positive semidefinite matrix Q =
LLT Equation (8) may now be written as

E = ξTQ–1ξ (11)

see Der et al. (2005) for further details. We used this
expression in the parameter dynamics Equation (9) in
the examples given below. As explained above, in
these examples we have

ψi(x) = Aikg(zk)

so that

Lij(x) = Aikg (zk)Ckj (12)

Equation (11) involves the inverse of the matrix Q
which measures the sensitivity of the sensorimotor
loop towards changes in the sensor values. Therefore,
minimizing E is immediately seen to increase this sen-
sitivity. We have shown in many practical applications
that in this way the robot develops an explorative behav-
ior which, however, is moderated by the fact that E is
also small if the prediction error ξ is small. Behavior
may be understood as the compromise between these
two opposing tendencies.

3 Example I. The Rocking Stamper

One of the interesting phenomena observed under the
parameter dynamics derived from Equation (9) is the
active closing of the sensorimotor loop so that the sys-
tem is set into motion, see Der et al. (2005). In order
to demonstrate this phenomenon we consider here a
system consisting of a bowl-like object with a pole
mounted on it driven by two motors in orthogonal direc-
tions, see Figure 1. The only sensors we have are two
infrared sensors mounted at the two front ends of the
trunk looking down and slightly sideways. Their val-
ues x1 and x2 depend on the distance to the ground in a
highly nonlinear way. Our controller consists of two
neurons with outputs y1, y2 controlling the angles of
the pole relative to the trunk.

We use the linear world model with delta rule
learning and the pseudolinear controller so that the
gradient of the error E = ξTL–1TL–1ξ is easily evaluated
because the inversion of the matrix L can be done
explicitly.

The initialization of the parameters Ckl can be done
randomly starting with small values. However, one
should check whether the sign of the determinant of L
is positive, and if not reinitialize. The point here is
that the error E diverges if L is singular and that the
sign of the determinant defines the nature of the bifur-
cations taking place. If the determinant is negative, the
feed-back strength in the sensorimotor loop is driven
towards large negative values. Once beyond the flip
bifurcation the signs of the controller outputs are
inverted in each time step which is difficult to realize
for the robot.

After initialization at first we have subcritical values
for the feed-back strength of the sensorimotor loop

Et vt
2=

C∆ ε∂E
∂C
------- x C,( )–=

∂
∂xj
-------

k 1=

n

∑

k 1=

n

∑ ′
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(see Der et al., 2005 for details) so that the influence
of the noise (the prediction error ξ) is damped and we
observe only small fluctuations of the pole position.
With increasing values of the controller parameters C
and therefore increasing feed-back strength the pole
movements become stronger so that after some time a
bifurcation point, typically the Neimark-Sacker bifur-
cation (see Haschke & Steil, 2005; Pasemann, Hild, &
Zahedi, 2003 for details) is reached and an (irregular)
oscillatory motion sets in. In Figure 2 the behavior,
reflected by the sensor readings, and the parameter
adaptation is displayed over time.

The interesting point in these experiments is that
despite the extremely nonlinear and nondeterministic
behavior of the mechanical system the controller
learns to produce a motion that probes the possibilities
of its body in a more or less controlled manner. In Fig-
ure 3 the behavior in a later stage of the experiment is
shown.

We observed a rocking (oscillatory) as well as a
walking-like behavior, the latter being caused by a
rotational mode of the pole with suitable phase shift.
The emergence of these modes is a direct consequence
of the sensitization paradigm. In fact, it is in these

Figure 1 Pole driven stamper. Left: close view from the top; Right: pole to the front.

Figure 2 Behavior represented by sensor readings and controller parameters starting from low initialization. Left: sen-
sor values from left and right infrared sensor over time. One can see clearly how the controller becomes sensitive and
increases Ckl; The bias terms (upper two of the lower three lines) Hi are seen to be adapted so as to compensate for the
positive average of the sensor values. Right: controller parameter values over time. The controller matrix is adapted to
map the difference of both sensors to servo 1 (y0) and the sum of both sensors to servo 2 (y1).
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modes that the controller – based on the current sensor
values – can evoke the maximum change in the sensor
values over the time step. Ideally this would exploit
the eigenfrequency of the mechanical system, which
is indeed approximately what happens.

In order to demonstrate the environment related
nature of the emerging behaviors we put the perform-
ing robot into a corner where the infrared sensors
measured a much shorter distance. As a result the
robot became calm for a short time. Then the parame-
ters were readapted to the new situation, so that an
oscillatory behavior set in again. The same readapta-
tion scenario occurred when moving the robot away
from the corner by hand.

We see that the robot is always sensitive to its
environment and adapts to new situations quickly.

4 Example II. Snakes

Systems with more degrees of freedom and of much
higher complexity may be realized in ODE simula-
tions (Smith, 2005). We consider snakes as sketched
in Figure 4. In this application we use propriocep-
tive sensors only, so that the sensorimotor loop now
has n degrees of freedom where n is the number of
joints. We assume a linear world model as before.

In the general n dimensional case the inversion of
the matrix L does not make sense numerically. Instead
we find v directly by solving the equation ξ = Lv for v
by some numerical method. A rather crude approxi-
mation turns out to be appropriate.

In the following experiments we used a snake
with n = 5 joints on a plane, see Figure 5. We initial-

Figure 3 Environment sensitive behavior. Top: sensor values from left and right infrared sensor over time. Bottom: pa-
rameter values over time. Until time 640 we observed rocking (oscillatory) motion with a short break at time 480. Then
the robot was set into a corner. The infrared sensors measure much shorter distances because they see the walls. At
time 870 the robot was pulled back into free space. After each change of the environment the robot was calm for a while
(low sensor fluctuation) and probed the new environment, however after a short time the robot rocked again.
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ized the matrix A as a diagonal matrix with the Aii cho-
sen so that the response of the joints was already

coarsely modeled. The matrix C was also diagonal but
with very small random values for the Cii so that in the
beginning the joints executed fluctuating motions
only. In the beginning we have n decoupled feed-back
loops as a result of this diagonal initialization. As seen
in Figure 6 the parameter dynamics rapidly increases
the diagonal elements of C so that the feed-back strength
in each of the loops increases. After some time they
reach the critical values where the fixed points are
destabilized and an intensive motion sets in. In this
regime the nondiagonal elements are also seen to
develop so that the dynamics of the joints are coupled.
On the one hand this is again an effect due to the
sensitization pressure which favors oscillatory modes.
On the other hand the reactions of the joints to the
applied forces are correlated because of collision,
inertia, and friction effects. Therefore the motion of
the snake is largely dependent on the environmental

Figure 4 A snake with two joints. Sensor values sent to
the controller are the angular velocities of the joints, the
controller outputs being the desired angular velocities.
Note that the controller has no knowledge about the an-
gles, the masses and geometry of the arm, and other en-
vironmental observables. The only information about the
world is given by collisions and friction forces.

Figure 5 Screenshots of snakes on a plane. Left: in initial position; Center: crawling; Right: jumping.

Figure 6 Development of the parameters Ai1 and C1j associated with the neuron controlling joint 1 in the initial phase of
an experiment. Left: the world model matrix A is initialized as the unit matrix reflecting the independence of the joints.
The learning dynamics preserves this in the initial phase. Right: the diagonal elements of the matrix C are initialized with
very small random values for Cii. The diagonal elements increase until the supercritical feed-back strength is reached
and the system starts to move (at about time 500). The development of the nondiagonal elements reflects the integra-
tion of contributions of the other segments. However, the self coupling Cii is seen to remain dominant (top line).
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conditions and this is clearly borne out by the experi-
ments. The coherence in the motions of the joints is
reflected by the nondiagonal elements of the matrix A,
see Figure 7.

The emerging dynamics is quite complex and
rather difficult to analyze. However, the degree of
organization of the motion can, for instance, be meas-
ured by the motion of the center of the snake projected
on the plane, see Figure 8 (left). We find that in the
beginning the center is more or less stationary (in a
time average picture) but after some time the snake
covers increasingly larger regions of space. Apart
from that, the altitudes of the snake segments also pro-
vide information about the type of behavior. For ana-

lytical purposes we consider the center of the highest
and lowest segment over time. The difference between
both can be interpreted as a measure for the current
posture. Jumping behavior is characterized by an alti-
tude > 0.5 of the lowest segment. As shown in Figure 8
(right) the snake sits up frequently and occasionally
performs jumps. Note that even on long time scales
we observe qualitative changes in the parameters (Fig-
ure 7), indicating a rich behavior diversity. This is also
seen directly when watching the snake over a long time
(see the videos). We did this in many experiments in
varying environments and also with two snakes in a
cage. In all cases we observed an impressive variety
of behavior.

Figure 7 Controller and model parameters for joints 2 (top) and 3 (bottom) during time step 150000 to 200000
(every 100th value plotted). Left: model parameters; Right: controller parameters. In accordance with our sensitization
paradigm the controller parameters are substantially changing over time but stay within a certain range, so that the
neurons remain in a sensitive working regime. The model parameters Aij describe the observed angular velocity at
joint i as the response of the motor action applied to joint j. One would expect a diagonal matrix A, however some non-
diagonal elements are non-zero, reflecting the correlations between different joints, for instance a[0][3] in the lower left
diagram. 
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5 Discussion

We have demonstrated in this paper that in applica-
tions to completely different agents our general para-
digm yields in each case an environment related active
behavior. The emerging behaviors are dictated by the
body of the agent. Our stamper develops rocking or
even “walking” modes, sometimes covering substantial
regions of space. The snake, which is mechanically
completely different, is seen to develop crawling and
jumping modes which may be considered as emerging
behavioral organization where the snake learns to feel
the possibilities of its body.

The emerging behaviors may be called environ-
ment related although they are generated by a com-
pletely domain invariant principle. For instance this is
demonstrated by the stamper which when in a rocking
or “walking” mode can be taken and put in a corner so
that there is a completely new sensorial situation. Nev-
ertheless, after some time it again develops its rocking
behavior so that eventually it gets out of situations
where it was captured. Similarly we can put one or
several of our snakes into a cluttered environment
(work in progress) without the snakes being caught in
corners. Moreover the snakes may entangle but in all
situations find a way to disentangle. First results can
be found in the videos in Der (2005b).

A further interesting property of our approach is
that the parameter dynamics never gets stuck in the

saturation regions of the neurons and that the activity
of the agents does not go down for a longer time.
Although we have taken some numerical precautions
this is still an amazing property of the algorithm in
view of the fact that the parameter dynamics is ulti-
mately driven by the noise (prediction error) which
may change by orders of magnitude.

It is interesting to compare our results with related
efforts from artificial evolution. From the point of view
of dynamical complexity our snake is close to crea-
tures of the Framstick world (Komosinski, 2000, 2005)
and also to some of Karl Sims’ creatures (Sims, 1994).
The main difference is that the latter have been evolved
for a specific behavior and the creatures can only per-
form correctly if situated in an appropriate environment.
In contrast, the behaviors displayed by our creatures
are to a very large extent contingent.

We consider our approach as a novel contribution
to the realization of artificial life systems. At the present
step of our development the behaviors, although related
to the specific bodies and environments, are without
goals. What we have achieved so far is the concomi-
tant learning of explorative behaviors together with
their forward model from scratch. This is a bootstrap-
ping task which is solved under our paradigm in a more
or less natural way invoking phenomena such as spon-
taneous symmetry breaking which leads to the emer-
gence of low dimensional behavior modes in high
dimensional search spaces. Our solution of this boot-

Figure 8 Motion of snake with 5 joints (6 segments with length 1) during the experiment. Left: position of the snakes
center projected on the plane over 165 000 time steps with starting point at (–3,0). Right: altitudes of the centers of the
highest (max) and the lowest (min) segment from time step 60000 to 65000. Segments laying completely on the ground
have a altitude of 0.1 whereas standing upright they have a altitude of 0.5. One can see that the snake sits up and even
jumps so that it exceeds the altitude of 0.5 with the lowest segment.
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strapping problem may also contribute to the so callled
developmental robotics. An example close to our work
is that of Kuniyoshi et al. (2003) which aims at the
emergence of higher cognitive abilities from the physi-
cal dynamics of the robotic system and its sensorimotor
interaction with the world. The parallel is at the level
of motor learning where the authors demonstrate the
need to acquire a set of explorative behaviors from
scratch. This is exactly the task solved by our system.
As a next step we will realize so-called behavior based
reinforcement learning. Our paradigm so far creates a
sequence of behavioral primitives which are to be
learned by a satellite network. Under a competing expert
paradigm each of the experts would be responsible for
one of the emerging behaviors. As in behavior based
robotics these primitives can be combined into more
complex behaviors guided by reward and punishment
in order to incrementally shape the system into a goal
oriented behavior.

Notes

1 In general the choice of  is not unambiguous. This must
be solved by additional constraints. However, in the
examples considered below we can determine  by matrix
inversion, which is unambiguous for nonsingular matri-
ces. Nonsingularity is ensured through initialization and
the learning rule.

2 If L is singular this is to be understood in the sense of the
pseudoinverse.
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