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Abstract

Despite the tremendous progress in robotic hardware
and in both sensorial and computing efficiencies the per-
formance of contemporary autonomous robots is still far
below that of simple animals. This has triggered an in-
tensive search for alternative approaches to the control of
robots. The present paper exemplifies a general approach
to the self-organization of behavior which has been devel-
oped and tested in various examples in recent years. We ap-
ply this approach to an underactuated ”snake” like artifact
with a complex physical behavior which is not known to the
controller. Due to the weak forces available, the controller
so to say has to develop a kind of feeling for the body which
is seen to emerge from our approach in a natural way with
meandering and rotational collective modes being observed
in computer simulation experiments.

1 Introduction

Despite the tremendous progress in robotic hardware
and in both sensorial and computing efficiencies the per-
formance of contemporary autonomous robots is still far
below that of simple animals. This has triggered an in-
tensive search for alternative approaches to the control of
robots. The present paper exemplifies a general approach to
the self-organization of behavior which has been developed
and tested in various examples in recent years, cf. [7], [2],
[3], and [4]. Our objective in the first instance is not the
generation of goal oriented behavior but the emergence of
sensorimotor coordination in complex robotic systems. In
the present paper this is an underactuated snake like artifact
with a complex physical behavior which is not known to the
controller. Due to the weak forces available, the controller
so to say has to develop a kind of feeling for the body which
is seen to emerge from our approach in a natural way.

Our paradigm is rooted in the dynamical system ap-
proach which we are going to discuss first in order to work
out the peculiarities of our approach. Initiated by seminal
work about ten years ago, cf. [1], [14] the dynamical sys-
tems have found increasing interest in recent years as a sub-
strate for the generation of behavior. The point is that de-
pending on the parameters even low-dimensional dynamical
systems offer a broad spectrum of properties ranging from
fixed point over limit cycle to chaotic behaviors. By way of
example we discuss rhythmic motion generation by limit-
cycle dynamical systems. Widely used is a central pattern
generator like the one introduced by Matsuoka [10] in 1985
which models the dynamics of two mutually inhibiting neu-
rons in terms of a set of differential equations. This has been
further developed and applied to problems like quadruped
locomotion [8], drumming [15], juggling [11] playing with
a slinky toy [17], and in particular to the gait control of
bipedal walking machines which are of much importance
in humanoid robotics, cf. [9].

These and related approaches try to use the potentials of
dynamical systems in a kind of building blocks approach
to complex behaviors. The idea is to use (linear) oscilla-
tors in order to realize movement primitives which then are
coupled together to a nonlinear dynamical system affording
a large range of potential behaviors. These approaches in
a clever way use specific properties like entrainment, fre-
quency and phase locking of coupled oscillator systems in
order to scale up to systems at the humanoid level.

The annoying task of tuning manually the parameters
of the oscillators and the pertinent couplings is avoided by
using either reinforcement learning or learning by demon-
stration, cf. [13], [12] so that for instance in bipedal walk-
ing human-like gaits are realized by this building block ap-
proach on the basis of dynamical systems.

Nevertheless the physics of any walking machine largely
differs from that of the human gait apparatus so that our
goal is not to mimic human behavior. Instead it is our aim
to first let the machine try to develop its own way of be-



Figure 1. Mechanical construction of the
”skidding snake”. Ball-and-socket joints be-
tween each sphere are drawn. Arrows indi-
cate the possible rotations: in every direc-
tion at the joint and around the axis between
joints.

ing which afterwards may be sorted and eventually shaped
into a desired direction. The corresponding principles of
self-organization have been formulated and applied to vari-
ous robotic systems in our recent papers and will be briefly
sketched in Sec. 2 below. Sec. 3 presents the application to
an underactuated physical system of many degrees of free-
dom. Some conclusions may be found in Sec. 4.

2 Self-organizing dynamical systems

Based on the papers [3], [4] we give here the basic prin-
ciples of our approach. We start from the informations the
robot gets by way of its sensor values. Let us consider a
robot which produces in each instantt = 0, 1, 2, . . . of time
the vector of sensor valuesxt ∈ Rn. By way of example
we will consider in the present paper the ”skidding snake”
consisting of a head which can move in the plane driven by
forces which may be understood as a force vectory ∈ R2

of arbitrary direction but restricted magnitude. In a physi-
cal realization the head may be a robot with omnidirectional
drive. The head is connected to a tail ofn (n = 9 in the ex-
periment) spheres which are connected to each other by a
link (ball-and-socket joint, see Fig. 1) so that each of the
spheres can rotate passively like in a string of beads. In the
experiments the system is underactuated in the sense that
the force acting on the head is not sufficient to drag the tail
into arbitrary directions. Instead the motions of the head are
more or less lateral only. Nevertheless as we will see in the
simulations the controller can excite collective motions by
seemingly exploiting inertia and gyro effects.

The sensor values in this example are the velocities of
the head relative to the ground, i.e. we measure a vector1

xt = (xt
1, x

t
2)

T . The controller is given by a functionK :
Rn → Rm mapping sensor valuesx ∈ Rn to motor values
y ∈ Rm

y = K (x)
1We write the time as an upper index if we want to indicate the compo-

nents of a vector.

all variables being at timet. In the example we haveyt =
(yt

1, y
t
2)

T , yt
i being the force into the directioni = 1, 2 of

the plane (in world coordinates).
Our controller is to be adaptive, i.e. it depends on a set

of parametersc ∈ RC . In the cases considered explicitly
below the controller is given by the pseudolinear expression

Ki (x) = g (zi) (1)

whereg (z) = tanh (z) and

zi =
∑

j

cijxj +Hi (2)

This seems to be overly trivial concerning the set of behav-
iors which are observed in the experiments. Note however
that in our case the behaviors are generated essentially also
by an interplay of neuronal and synaptic dynamics (see Eq.
11 below) which makes the system highly nontrivial.

2.1 World model and sensorimotor dy-
namics

We assume that our robot has a minimum ability for cog-
nition. This is realized by a world modelF : Rn × Rm →
Rn mapping the actionsy of the robot on the new sensor
values, i.e.

xt+1 = F (xt, yt) + ξt (3)

whereξt is the model error. The modelF can be learned by
the robot using any learning algorithm of supervised learn-
ing.

In the case considered below we havex, y ∈ R2 and we
assume that the response of the sensor is linearly related to
the motor command, i.e. we write

xt+1 = Ayt + ξt (4)

whereA is a matrix andξ the modeling error. The model is
learned by gradient descent as

∆A = εM ξyT (5)

bothξ andy taken at timet. Again, this expression seems
to be oversimplified. However model learning will be seen
to be very fast so that the model parameters change rapidly
in time so that different world situations are modeled by re-
learning. Moreover the model only is to represent the coarse
response of the world to the actionsy of the robot, behavior
being organized such that this reaction is more or less pre-
dictable. Hence the world model mainly is to give a quali-
tative measure of these response properties.

With these notions we may write the dynamics of the
sensorimotor loop in the closed form

xt+1 = ψ (xt) + ξt (6)

where in our specific case

ψ (x) = AK (x)



2.2 Realizing self-organization

As is well known from physics, self-organization results
from the compromise between a driving force which ampli-
fies fluctuations and a regulating force which tries to restabi-
lize order in the system. In our sensorimotor dynamics the
destabilization is achieved by increasing the sensitivity of
the sensoric response induced by the controls based on pre-
vious sensor actions. The counteracting forces are obtained
from the requirement that the consequences of the actions
taken are still predictable. More details may be found in
[7], [3], [4]. We formulate these two requirements into an
objective function

E = ξTQ−1ξ (7)

whereξ is the model error as introduced above, the positive
semidefinite matrixQ = LLT andL is the Jacobi matrix of
the sensorimotor dynamics which in the specific case reads

Lij (x) =
n∑

k=1

Aikg
′ (zk) ckj (8)

all quantities depending on timet. Using gradient descent
the parameter dynamics is

∆ct = −ε∂Et

∂ct
(xt, ct) (9)

explicit expressions for the parameter dynamics being given
below, cf. Eq. 11. Note that the parameter dynamics Eq. 9
is updated in each time step so that the parameters in prac-
tical applications may change on the behavioral time scale.
This means that the parameter dynamics is constitutive for
the behavior of the robot.

The explicit expression Eq. 7 displays quite obviously
the essence of our approach. The matrixQ measures the
sensitivity of the sensorimotor loop towards changes in the
sensor values. MinimizingE is thus immediately seen to in-
crease this sensitivity sinceE contains the inverse ofQ. We
have shown in many practical applications that in this way
the robot develops an explorative behavior which however
is moderated by the fact thatE is also small if the predic-
tion errorξ is small which is the case for smooth environ-
ment related behaviors. Behavior may be understood as the
compromise between these two opposing tendencies.

3 Experiments

The ”skidding snake” was introduced briefly already
above. We used the ODE tool (open dynamics engine [16])
for the computer simulations.

3.1 Explicit parameter dynamics

The controller dynamics is given by Eq. 9. The inversion
of the2 × 2 matrixQ is trivial so that explicit expressions
for the parameter dynamics are obtained straightforwardly.
In deriving the latter one has to observe that the parameters
also enter theg′ functions which are treated as

∂

∂cik
g′j = δijg

′′
i

∂zi

∂cik
= δijg

′′
i xk

In the case ofg (z) = tanh z we haveg′′ (z) = −2gg′ so
that

∂

∂cik
g′j = −2δijg′iyixk (10)

The explicit formulae are (omitting the time indices every-
where)

ε−1∆cij = ζivj − 2ζiρiyixj (11)

ε−1∆Hi = −2ζiρiyi

whereζi = g′iµi, µ = ATQ−1ξ, andρ = cv. We may in-
terpret the first termζivj as a general driving term which is
seen to increase the sensitivity of the linearized sensorimo-
tor loop. The second term contains the nonlinearity effects
due to Eq. 10 and essentially keeps the neurons out of the
saturation regime where they are not sensitive to the inputs.
It may be interpreted as an (anti-) Hebbian learning term
with strength given by2ζiρi, theH dynamics being driven
exclusively by this term.

Note that the parameterε is chosen such that the param-
eters change at about the same time scale as the behavior.
The interplay between synaptic and state dynamics makes
the controller a complex dynamic system which is dynam-
ically embedded into the sensorimotor loop. The ensuing
robot behaviors thus are of a much larger complexity than
the pseudolinear expression with fixed parameters might
ever realize.

3.2 Emergence of collective modes

In the experiments the ”snake” is moving in an rectan-
gular arena surrounded by walls. There is a considerable
friction of the spheres on the ground so that motion essen-
tially requires the spheres to rotate. In our experiment the
model and controller parameters (matricesA andC) are ini-
tialized as unit matrices. Because of the underactuated set-
ting in the initial phase of the experiment forces applied to
the head element lead to small lateral motions of the head
with the tail sometimes swaying passively around. Hence
the sensor valuesx and controller outputsy are fluctuating
around zero, see Fig. 2. Therefore∆cij in eq. 11 is dom-
inated by the driving termζivj and the matrix elements of
C increase (see Fig 3 top) so that the reaction of the head to



its sensor values becomes more and more sensitive. Hence
the amplitude of the controller output increases, but this is
more or less only the amplification of the noise and there is
no reaction of the body to this random signals. This is seen
from the fact that the sensor values keep fluctuating around
zero in the first 18000 steps. However with the sensitivity
increasing more and more the controller also starts to re-
spond to the swaying of the body and manages to amplify
the latter. This process is self-supporting since the emerg-
ing collective motions respond to the controller in a much
more systematic way. Thus in the long run the controller
generates collective motions of all elements which is seen
at first as meandering and eventually leads to a rotational
mode where the body becomes stiff like a stick due to the
gyro effects of the rapidly rotating spheres of the body, see
the videos [5], [6].

There is an interesting interplay between the parameter
dynamics of the world model and the controller. In the
beginning the model parameters are decreasing (first 3000
steps), see Fig. 3 center, since the reaction of the head to
the applied forces is weak due to the fact that the controller
does not yet ”feel” the reactions of the body so that it does
not ”know” how to excite the collective modes. Around step
18000 the controller starts to excite the collective modes so
that there is a definite response of the body to the controller
actions which is reflected by the increase of the diagonal
elements of the matrixA.

Later on the controller is seen to turn down its reaction
strength to the inputs which makes sense since in the rota-
tional mode the forces necessary to keep the rotation going
is much smaller. The combined action ofC andA is re-
flected in the response matrixR of the (linear) sensorimotor
loop, see Fig. 3 which displays a steep rise in the response
of the system when the collective mode is emerging. Af-
ter a stable period of high rotation frequency the response
is seen to decrease and at the end of the rotational period it
is seen to have a nice SO2-like form reflecting the fact that
the system is in a well controlled rotational mode of lower
frequency. Quite generally, the response strength is seen to
self-regulate to a slightly supercritical value if the system
gives reasonable response.

Another interesting effect is that the frequency of the ro-
tational mode is not constant but increase at first, reaches
a plateau value and after some time decreases again. Then
the rotational mode decays and reappears after a new fluctu-
ation and meander phase. This play repeats infinitely often
which reflects the fact that the system so to say probes into
its various modes of behavior. Moreover this remains also
true under heavy perturbations by other creatures in the en-
vironment, see Fig. 4 and the videos.

Figure 2. Sensor and motor values during
the experiment. Top: Sensor values x fluc-
tuate around zero at the beginning, because
the applied forces lead only to small lateral
motions of the head with the tail sometimes
swaying around passively. With increasing
sensitivity the controller starts to respond to
the swayings of the body leading to a rota-
tional mode of behavior (second half of the
diagram). Bottom: Controller outputs y also
fluctuate around zero in the beginning, but
with increasing sensitivity of the controller
the amplitude increases, the controller re-
sponds to the swayings of the body eventu-
ally leading to a rotational mode.



Figure 3. Parameters during the experiment. Left: Matrix C of controller parameters showing the
increase of sensitivity, in the first half of the diagram, while in the second half when the collective
motion sets in the reaction strength is turned down since there is a definite response of the body
to the controller actions even with smaller parameter values. Center: Matrix A of model parameters
shows the correlation between sensor and motor values. At the beginning there is a decrease from
the initial values to the ones representing the weak reaction of the head element to the controller
outputs. After step 18000 when the collective mode sets in the diagonal elements increase since
there is a definite response of the body to the controller actions. Right: The response matrix R of
the system shows a steep rise when the collective mode emerges. After a stable period the response
strength decreases, showing a SO(2)-like form at the end of the experiment reflecting the systems
rotational mode of lower frequency. It is seen that the response strength is self-regulating to a
slightly supercritical value if the system gives valuable response.

Figure 4. Images of ”skidding snakes”. Most left: Initial position in an experiment with three ”skid-
ding snakes”. Left: Close view. Right: In the run. Two ”snakes” in rotational mode where the bodies
become stiff like sticks due to the gyro effects of the rapidly rotating spheres of the body. The third is
in z-shape with the tail passively swaying around. Most right: A group of interacting self-organized
creatures controlled by the presented approach (except the three passive balls). The systems try dif-
ferent modes of behavior (including the rotational mode of the ”skidding snake”) even under these
heavy perturbations. See also the videos [6].



4 Discussion

We have demonstrated in the present paper that our gen-
eral paradigm as formulated mathematically in the error
function, cf. Eqs. 7, 8 leading to the parameter dynamics
Eq. 11 in applications to a completely unknown body with
a complicated physics leads to an active behavior where the
controller so to say tries to feel its body and that in the in-
terplay collective modes of the physical system are excited.
We have seen that these modes are not persistent but instead
are metastable so that the system more or less tries to inves-
tigate its behavioral possibilities. Moreover this scenario is
stable under strong influences by the environment both of a
static and dynamic nature (other agents), see the videos.

An important consequence is also derived for the inter-
play between the world model and the controller. The sys-
tem does not have any information on the structure and dy-
namics of the body so that the world model has to learn this
from scratch. This involves the so called cognitive boot-
strapping problem meaning that on the one hand the con-
trols are to be such that the world model is provided with
the necessary informations. On the other hand these actions
require a certain knowledge of the reactions of the body –
information is acquired best by informed actions. The con-
certed manner by which both the controller and the world
model evolve during the emergence of the rotational mode
seems to be a good example of this process.

We consider our approach as a novel contribution to
the self-organization of complex robotic systems. At the
present step of our development the behaviors although re-
lated to the specific bodies and environments are without
goal. As a next step we will realize a so called behavior
based reinforcement learning. When watching the behav-
ing system one often observes behavioral sequences which
might be helpful in reaching a specific goal. The idea is to
endorse these with reinforcements in order to incrementally
shape the system into a goal oriented behavior.
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